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Summary

Nowadays, there exists a large variety of scientific, industry and engineering applications that
require high computational power and storage, and their demands continue to grow; in order to
obtain more precise solutions in these applications, scientists need to elaborate and work with more
sophisticated and complex physical and mathematical models. Consequently, the capacity of new
data processing systems and High Performance Computing (HPC) centers is saturated shortly after
of their set up [2, 17, 44, 50]. Nonetheless, these resources are still used: scientific computation (or
computational sciences, that is, the elaboration of mathematical models and the use of computers
to analyze and solve scientific problems) is an effective tool in scientific discovering, complementary
to more traditional methods based on theory and experimentation [44, 50].

Large-scale HPC systems are large energy consumers, that employ computing resources and
auxiliary systems to operate [44, 49, 51, 74]. This consumption has a direct impact on the op-
erational and maintenance costs of computing centers. However, electricity cost is not the only
problem; in general, energy consumption turns into carbon emissions that are dangerous to the
environment and public health, and the heat reduces the reliability of the hardware [51]. The
situation requires additional measures: studying the Green500 list of June 2017 [1] we can see that,
nowadays, the most efficient HPC systems in terms of power consumption attain 14,110 MFLOPS
per Watt (MFLOPS/W). A simple calculation reveals that reaching the EXAFLOPS rate with the
current technology will require 70.9 MFLOPS/W approximately, with an approximate cost of 70.9
million dollar per year. Although EXAFLOPS challenge will unleash innovative scientific discov-
eries, it is also true that more efficient hardware and software technologies are required from the
energy point of view [6, 13, 18].

The pressure of HPC centers has forced hardware manufacturers to improve their designs to
increase energy efficiency: Central Processing Unit (CPU), memory and disks (three of the large
energy consumers in computing systems, with the remaining ones being the interconnection net-
work and the power supply) integrate energy saving strategies, based on the system transition to
low power states or the dynamic reduction of frequency and voltage (DVFS or Dynamic Voltage
Frequency Scaling). On the other hand, software systems, communication libraries and, especially,
computational libraries and application codes running in HPC centers have been, in general, obliv-
ious to energy consumption. The Top500 [4] list is a good example. Computers in this list are
classified according to the sustained performance (in floating-point arithmetic operations per sec-
ond (FLOPS)) that the Linpack benchmark attains (basically, the solution of a dense linear system
of large dimension). However, the numerical method behind this test, the LU factorization, is far
from representative of the real performance attained by most scientific codes [18].
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Even though this is a mature topic in other segments, the development of energy-aware solutions
for HPC applications, which optimize both the execution time and the energy consumption, is still
only in its early stages, despite the huge benefits that it may produce [6, 51]. The HPC community
is now aware of the energy costs, as was demonstrated with the creation of the Green500 [1] list.

As a response to this situation, the general objective of this thesis is the study, design, develop-
ment and analysis of experimental solutions that are energy-aware for the execution of scientific and
engineering numerical applications on low power architectures, more specifically asymmetric plat-
forms. With the aim of demonstrating the benefits of these contributions, we selected diverse dense
linear algebra operations that arise in very different areas, such as image processing, molecular
dynamics simulation, and big data analytics, among others.
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Resumen

En la actualidad existe una gran variedad de aplicaciones cient́ıficas, industriales y de ingenieŕıa
que requieren un alto poder computacional y de almacenamiento, y su demanda continúa crecien-
do; para obtener soluciones más precisas en estas aplicaciones, los cient́ıficos necesitan elaborar y
trabajar con modelos f́ısicos y matemáticos mucho más sofisticados. Como consecuencia, los nuevos
equipos de procesamiento de datos y los centros de Computación de Altas Prestaciones (CAP) se
saturan a las pocas semanas de haber sido puestos en funcionamiento [2, 17, 44, 50]. Todos estos
recursos no se desaprovechan: la computación cient́ıfica (o ciencias de la computación, es decir,
la elaboración de modelos matemáticos y el uso de computadoras para analizar y resolver proble-
mas cient́ıficos) es una herramienta eficaz para el descubrimiento cient́ıfico, complementaria a los
métodos más tradicionales basados en la teoŕıa y la experimentación [44, 50].

Los sistemas de CAP de gran escala son grandes consumidores de enerǵıa, que emplean los
recursos de computación y los sistemas auxiliares para funcionar [44, 49, 51, 74]. Este consumo tiene
un impacto directo en los costes de funcionamiento y mantenimiento de los centros de computación,
poniendo en peligro su existencia y perjudicando la puesta en marcha de nuevas instalaciones. Sin
embargo, el coste de la electricidad no es el único problema; en general, el consumo de enerǵıa resulta
en emisiones de dióxido de carbono que son un peligro para el medio ambiente y la salud pública,
y el calor reduce la fiabilidad de los componentes de hardware [51]. La situación requiere medidas
adicionales: estudiando la lista Green500 de junio de 2017 [1] se puede observar que, a d́ıa de hoy, los
sistemas de CAP más eficientes en cuanto a potencia consumida ofrecen 14.110 MFLOPS por vatio
(MFLOPS/W). Aśı, un simple cálculo revela que alcanzar la tasa de EXAFLOPS con la tecnoloǵıa
actual requeriŕıa, aproximadamente, 70,9 MFLOPS/W, con un coste también aproximado de 70,9
millones de dólares por año solo en electricidad. Aunque el desaf́ıo del EXAFLOPS hará, sin
duda, que se produzcan descubrimientos cient́ıficos innovadores, también es cierto que se necesita
que la tecnoloǵıa hardware y el software del sistema sean más eficientes desde el punto de vista
energético [6, 13, 18].

La presión de los centros de CAP ha obligado a los fabricantes de hardware a mejorar sus diseños
para conseguir una mejora en la eficiencia energética: Unidad Central de Procesamiento (CPU),
memoria y discos (tres de los grandes consumidores de enerǵıa en los sistemas informáticos, siendo
los otros dos la red de interconexión y la fuente de alimentación) cuentan con algunas estrategias
de ahorro, basadas en la transición del sistema a algún estado de bajo consumo o en la reducción
de la frecuencia y el voltaje de forma dinámica (DVFS o Dynamic Voltage Frequency Scaling).
Por otro lado, los sistemas software, las bibliotecas de comunicación y, en especial, las bibliotecas
computacionales y los códigos de aplicaciones usados en los centros de CAP han sido, en general,
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insensibles al consumo de enerǵıa. La lista Top500 [4] es un claro ejemplo. Los computadores de
esta lista quedan clasificados en función del rendimiento sostenido (en operaciones aritméticas en
coma flotante por segundo (FLOPS)) que alcanzan en el test Linpack (básicamente, la solución de
un sistema lineal denso de dimensión escalable). Sin embargo, el método numérico que hay detrás
de este test, la factorización LU, es poco representativo del rendimiento real conseguido por la
mayoŕıa de códigos cient́ıficos [18].

Si bien es un tema maduro en otros segmentos, el desarrollo de soluciones conscientes de la
enerǵıa para las aplicaciones de CAP, que optimizan tanto el tiempo de ejecución como la con-
servación de la enerǵıa, se encuentra todav́ıa en sus inicios, a pesar de los enormes beneficios que
puede producir [6, 51]. La comunidad que trabaja en CAP ha empezado a tomar consciencia de los
costes energéticos, y aśı se ha creado una clasificación como la lista Green500 [1], que utiliza este
tipo de métricas para comparar y clasificar los supercomputadores en el mundo de acuerdo a su
eficiencia energética.

En respuesta a esta situación, el objetivo general de esta tesis es el estudio, diseño, desarrollo
y análisis experimental de soluciones conscientes de la proporcionalidad energética para aplicacio-
nes cient́ıficas y de ingenieŕıa numéricos sobre arquitecturas de bajo consumo, concretamente en
plataformas asimétricas. Con el propósito de demostrar los beneficios de estas aportaciones, se han
escogido distintas operaciones de álgebra lineal presentes en aplicaciones pertenecientes a campos
tan distintos como el procesado de imágenes, la simulación de dinámica molecular o el análisis de
grandes volúmenes de datos.

xx



Agradecimientos

El tiempo pasa volando y prueba de ello han sido los últimos años que han dado lugar a esta
tesis doctoral. Ha sido un periodo intenso, en el que el esfuerzo, la dedicación y el sacrificio han sido
claves; pero todo ha sido posible gracias a la motivación y satisfacción de trabajar en lo que más
me gusta. Ha sido una etapa llena de retos y experiencias, tanto a nivel personal como profesional,
lo que me ha permitido disfrutar de la novedad de las circunstancias. Sin embargo, nada de esto
hubiese sido posible sin la ayuda de las personas que me han brindado la oportunidad de trabajar
con ellas, y las que, desinteresadamente, me han acompañado en cada momento de esta aventura.
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estado en él y a sus visitantes, José, José Manuel, Sergio B., Asun, Maribel, Juan Carlos, Germán
L., Germán F., Merche, Rafa M., Alfredo, Manel, Toni, Fran, José Antonio, Maria, Roćıo, Sergio I.,
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CHAPTER 1

Introduction

For many decades, the evolution of computer technologies and architectures has enlarged the
performance gap between the throughput of processors and the memory access rate [63]. While
the difference is no longer growing at a significant rate, the scenario that we face nowadays is that,
in order to deliver very high performance, programmers have to explicitly take into account the
cost of data movements. This is particularly the case of dense linear algebra (DLA) operations
for which there exist highly tuned implementations, almost for any architecture, from the past
vector processors to the current multicore designs, and the fancier graphics processing units and
co-processors such as the Intel Xeon Phi.

This dissertation targets two important problems. The first one is the design of low-level DLA
kernels for architectures comprising two (or more) classes of cores. The main question we have to
address here is how to attain a balanced distribution of the computational workload among the
heterogeneous cores while taking into account that some of the resources, in particular cache levels,
are either shared or private. The second question is partially related to the first one. Concretely,
this dissertation explores an alternative to runtime-based systems in order to extract “sufficient”
parallelism from complex DLA operations while making an efficient use of the cache hierarchy of
the architecture.

1.1 Motivation

Asymmetry-aware BLAS. DLA is at the bottom of the “food chain” for many scientific and
engineering applications, which require kernels to tackle linear systems, linear least squares problems
or eigenvalue computations, among others [38]. To address this, the scientific community has
reacted by creating the Basic Linear Algebra Subroutines (BLAS) [47] in order to define standard
domain-specific interfaces for a few dozens of fundamental DLA operations (such as the vector
norm, the matrix-vector product, and the matrix-matrix multiplication) and improve performance
portability across a wide range of computer architectures.

Highly-tuned implementations of BLAS (for example, Intel MKL [66], IBM ESSL [64], NVIDIA
cuBLAS [81], GotoBLAS [57, 58], OpenBLAS [97], ATLAS [96] or BLIS [95]) aim to deliver high
performance by carefully orchestrating the movement of data across the memory hierarchy to hide
this overhead. To attain this goal, these implementations interleave data packing operations with
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CHAPTER 1. INTRODUCTION

computations to maximize the access to data that is closer to the arithmetic units and favour the
use of vector instructions. When the target architecture comprises multiple cores, these instances
of BLAS also exploit loop-parallelism to distribute the workload in a balanced manner, ensuring
that the cores make an efficient use of their private cache memories, and collaborate in the access
to the shared cache levels instead of competing for them.

Asymmetric processors are heterogeneous architectures in principle conceived as a low-power
designs for embedded systems. However, as we progress along the final steps of Moore’s Law, the
constraints imposed by the end of Dennard’s scaling [40] and the high energy proportionality [17] of
asymmetric processors are promoting them into a building block to assemble large-scale facilities for
high performance computing [3]. Asymmetry can also appear in a conventional multicore processor
when some of the cores are enforced to operate at a lower frequency, due for example to constraints
imposed in the processor’s power budget.

From the point of view of a parallel BLAS, asymmetric processors present the difficulty of
distributing the work among a heterogeneous collection of resources (in practice, two classes). In
order to attain high performance, the scheduling has then to take into consideration the distinct
computational capabilities of the cores (e.g., due to different width/dimension of the floating-point
units or different core frequency). In addition, for processors that are physically-asymmetric, the
parallelization has to consider also the distinct cache configurations. As we will expose in this
dissertation, even for simple and regular operations such as those composing BLAS, the challenge
is far from trivial when the goal is to squeeze the last few drops of floating-point performance.

Cache-aware matrix factorizations. The Linear Algebra Package (LAPACK) [11] specifies
a collection of DLA operations, built on top of the BLAS, with a functionality that is closer to
the application level. For example, LAPACK includes driver routines for the solution of linear
systems, the calculation of the singular value decomposition, the computation of the eigenvalues of
a symmetric matrix, etc.

For multicore processors, the conventional approach to exploit parallelism from LAPACK has
relied, for many years, on the use of a multi-threaded instance of the BLAS. This solution exerts
a strict control over the data movements and can be expected to make an extremely efficient use
of the cache memories. Unfortunately, for complex DLA operations, the exploitation of parallelism
only within the BLAS constrains the concurrency that can be leveraged by imposing an artificial
fork-join model of execution. Specifically, with this solution, parallelism does not expand across
multiple invocations to BLAS kernels even if they are independent and, therefore, could be executed
in parallel.

The increase in hardware concurrency of multicore processors in recent years, at the pace dic-
tated by Moore’s Law, has led to the development of parallel versions of some DLA operations that
exploit task-parallelism via a runtime. (See, for example, the efforts with OmpSs [48], PLASMA-
Quark [5], StarPU [91] and libflame-SuperMatrix [52].) In some detail, these task-parallel ap-
proaches decompose a DLA operation into a collection of fine-grained tasks with dependencies, and
issue the execution of each task to a single core, simultaneously executing independent tasks on
different cores. The runtime-based solutions are better equipped to tackle the increasing number
of cores of current and future architectures, because they leverage the natural concurrency that is
present in the application. However, with this type of solution, the cores ferociously compete for
the shared memory resources and may not amortize completely the overheads of BLAS (e.g., for
packing) due to the use of fine-grain tasks.

In the mixed scenario described in the above paragraphs, this dissertation investigates whether
it is possible to extract nested task- and loop-parallelism to feed all the cores of a current multi-
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socket architecture. The complementary objective is to make an efficient use of the cache hierarchy.
In the framework of our study, the target is obviously a DLA operation.

1.2 Contributions

This dissertation makes the following contributions to advance the state-of-the-art on the high
performance implementation of DLA operations:

• We introduce efficient multi-threaded implementations of some kernels of the Level-2 BLAS
and the complete Level-3 BLAS for asymmetric architectures composed of two types of cores
with the following properties:

– Our solution leverages the multi-threaded implementation of the matrix-matrix multi-
plication and the sequential implementation of the matrix-vector product kernels in the
BLIS library [95], which decompose the operation into a collection of nested loops around
a micro-kernel. Starting from these reference codes, we propose a modification of the
loop stride configuration and scheduling to distribute the workload comprised by certain
loops among the two core types while taking into account their distinct computational
performance and cache organization.

– We demonstrate the generality of the approach by applying the same parallelization
principles to develop tuned versions of the BLAS for 32-bit and 64-bit ARM big.LITTLE
processors consisting, respectively, of 4+4 (slow+fast) cores and 4+2 (slow+fast cores).
The kernels not only distinguish between different operations, paying special care to
the parallelization of the triangular system solve, but also take into consideration the
operands’ dimensions (shapes).

– The correction of the new asymmetry-aware BLAS is validated by integrating them with
the reference implementation of LAPACK from the netlib public repository as well as
some new routines for the reduction to compact band forms involved in the solution of
symmetric eigenvalue problems and the computation of the singular value decomposition
(SVD).

• We propose a novel nested parallelization strategy for dense matrix factorizations that applies
a static look-ahead to expose a certain degree of task concurrency in combination with the
use of a multi-threaded implementation of the BLAS in order to attain an efficient use of the
cache system. In more detail, our solution makes the following specific contributions:

– We demonstrate the benefits of this nested approach by targeting the LU factorization
with partial pivoting, an operation that is representative of many other matrix decom-
positions which are key for the solution of key DLA problems. Furthermore, our solution
can be expected to carry over to any matrix factorization that is composed by a loop
that iterates over the column/rows of a matrix, with a loop body that is composed of
a “sequential” panel factorization and a highly parallel trailing update. This is the case
of the blocked right-looking variants for the LU, QR, Cholesky and LDLT factorization
and, to some extent, also of some decompositions for the reduction to compact forms
that are employed in the solution of symmetric eigenvalue problems and the computation
of the singular value decomposition (SVD).

– We introduce a malleable thread-level implementation of BLIS that allows to change
the number of threads that participate in the execution of a BLAS kernel at execution
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time. This technique departs from the current, inflexible solution adopted in all imple-
mentations of the BLAS, which presuppose that, once issued, the number of threads
participating in the execution of a BLAS kernel will not vary.

– In case the panel factorization is less expensive than the update of the trailing submatrix,
we leverage the malleable instance of the BLAS to improve workload balancing and
performance, by allowing the thread team in charge of the panel factorization to be
re-allocated to the execution of the trailing update.

– To tackle the opposite case, where panel factorization is more expensive than the update
of the trailing submatrix we design an early termination (ET) mechanism that allows
the thread team in charge of the trailing update to communicate the alternative team
of this event.This alert forces an ET of the panel factorization, and the advance of the
factorization into the next iteration

1.3 Organization

This chapter presents the motivation and main contributions of this thesis.. In addition, the
structure of the whole document is detailed next.

Chapter 2 reviews the current state of the Dense Linear Algebra (DLA) libraries BLAS and
LAPACK. The evolution, structure and main features of those libraries are presented in this chapter.
The systems used in this thesis, the multi-core Intel Xeon E5-2603 and the asymmetric multi-core
processors Odroid-XU3 and Juno are described next. That chapter also includes the description of
the PMLib framework (used for the power consumption measurements) and its interaction with
tracing and visualization tools.

In Chapter 3, the design, implementation and evaluation of BLAS-2 and BLAS-3 routines
for asymmetric multi-core processors is carried out. Routines gemm and gemv are studied as
the reference kernels for the corresponding levels, BLAS-3 and BLAS-2 respectively. Moreover, we
identify the flaws of the initial asymmetry-aware implementation and, after a thorough performance
analysis, present the selected solution in each case.

Chapter 4 analyzes several advanced operations for DLA. The results of the direct migration
of the Cholesky and LU factorizations relying on the asymmetric-aware version of BLAS-3 are
presented. That chapter includes the proposal of a new technique, thread-level malleability, which
allows a more efficient use of the resources. The implementation of the technique and evaluation
of its benefits are presented there.

In Chapter 5, the study of LAPACK routines in combination with the asymmetry-aware im-
plementation of BLIS is extended in order to expose the benefits of the BLAS-2 asymmetry-aware
version. To this end, we evaluate three routines that perform two-sided orthogonal reductions
(TSOR) of a dense matrix to a condensed form. In addition, we present a model in order to se-
lect specific parameters that may increase the performance of the TSOR. The study presented in
this chapter completes the validation of the new asymmetry-aware BLAS, started in Chapter 3
for BLAS-3, by integrating the new version of the library with the reference implementation of
LAPACK.

Finally, in Chapter 6, we present the general conclusions of the thesis, the main results obtained
as a list of publications, and a collection of open research lines.
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CHAPTER 2

Background

In this chapter we offer a short review of the DLA libraries, tools and platforms used in this
thesis. DLA operations are classified in two categories: basic and advanced. Basic DLA operations
are implemented in Basic Linear Algebra Subprograms (BLAS) library, while LAPACK supports
more sophisticated functionality. The first part of this chapter elaborates on the history of both
libraries, their structure and main features. Then, a description of the platforms used in the thesis is
carried out. Finally the PMLib framework is presented as the framework to collect power samples
in our tests.

2.1 Basic Linear Algebra Subprograms (BLAS)

Fundamental problems of linear algebra, such as the solution of linear (equation) systems or the
computation of eigenvalues or singular values, underlie a large number of scientific and engineering
applications. These problems are found in very different fields such as structure computations,
automatic control, integrated circuits design, and chemistry simulations, to name only a few. In
the same vein, while solving these problems, a small set of basic operations are often used, e.g., a
scalar vector multiplication, a triangular system solve or a matrix-matrix multiplication. In this
scenario, BLAS specifies a set of routines that perform these basic DLA operations, defining the
functionality and interface of each routine of the library.

The specification of BLAS was carried out by experts of different fields [47], which makes it
specially valuable, as a result of an interdisciplinary collaboration. BLAS is a compromise between
functionality and simplicity. On one hand, it defines a reasonable number of routines with a limited
number of parameters; on the other hand, it provides a wide functionality.

There exists a reference implementation of BLAS published on the Internet [78], but the main
strength of BLAS are its different implementations for specific architectures. Since the very be-
ginning, the development of optimized implementations of BLAS routines has been expected of
processor manufacturers. As a result, there are propietary implementations from AMD (AMD
Core Math Library (ACML)), Intel (MKL), IBM (ESSL) and Nvidia (cuBLAS). In addition, there
are also open source implementations such as GotoBLAS, OpenBLAS, ATLAS, and BLIS. In gen-
eral, these libraries implement each routine taking into account the organization of the target
architecture to exploit its resources in order to optimize performance.
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The first implementation of BLAS [72] was made in the 1970s and it has been relevant in the
solution of dense linear algebra problems ever since. Due to its reliability, robustness and efficiency,
several libraries were designed in order to use BLAS routines internally. In addition to reliability
and efficiency, BLAS presents the following advantages:

• Code readability: the name of the routines express their functionality.

• Portability and efficiency: when migrating the code to a new platform, the efficiency will
remain reasonable as long as a specific version of BLAS for the new architecture is used.

• Documentation: all BLAS routines are thoroughly documented.

The most common implementations of BLAS are implemented in C and Fortran. However, a
limited amount of assembly code is sometimes present in order to generate more efficient code.

2.1.1 Levels of BLAS

At the beginning of the development of BLAS, in the early 1970s, the most powerful computers
integrated vector processors. The original BLAS were designed with this type of processor as the
target, creating a small set of operations that worked on vectors (Level-1 BLAS or BLAS-1). The
main objective of that specification was to foster the development of optimized implementations
depending on the target architecture. In this way, from the very beginning, the BLAS creators
defended the importance of “outsourcing” the implementation of efficient basic operations to the
architecture designers, who were able to generate more robust and efficient code [71].

The initial set of routines comprised by the BLAS-1 provided a reduced functionality, since it
only supported a limited number of vector operations. In 1987, the BLAS were extended with a new
set of routines that constitute the second level of BLAS (BLAS-2). Those new routines implement
matrix-vector operations, involving a quadratic amount of arithmetic operations and data. A public
reference implementation of the BLAS-2 was released [46]. From that implementation it is worth
highlighting the fact that matrix storage is done by columns, following the storage convention of
Fortran. As done for BLAS-1, manufacturers were encouraged to create specific implementations
and, to this end, some advice were given such as guidelines in order to adapt the inner loop of the
routine to the specific architecture, the use of assembly code, or compiler directives for the target
architecture.

Eventually, the growing disparity between the processor frequency and the memory bandwidth
resulted in the design of architectures with multiple levels of cache memory (memory hierarchy).
With the new memory structure, the BLAS-1 and BLAS-2 were not able to attain a reasonable
level of performance, since in both cases the ratio between the number of operations and data
movement is O(1), while the gap between the processor and memory throughput is much higher.
Consequently, the performance of BLAS-1 and BLAS-2 is constrained by the speed of the data
transfer from memory.

To tackle this problem, a third set of routines was defined in 1989, the Level-3 BLAS (BLAS-
3) [47], that implemented operations with computations of cubic order versus data movements of
quadratic order. The difference between the number of computations and memory data transfers,
when using a properly designed algorithm, allows to exploit the principle of locality in architectures
with a hierarchical organization of the memory, hiding the memory access latency and attaining
performances closer to the processor peak. From the algorithmic point of view, this is attained via
so-called blocked algorithms. These algorithms divide the matrix into submatrices (or blocks) and
carefully orchestrate the movement of these blocks across the memory hierarchy in order to increase
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the probability of finding the data in those memory levels that are closer to the processor. Hence,
blocked algorithms attain higher performance by making a better use of the memory hierarchy.

As was the case in the previous levels of BLAS, the third level of BLAS presents a compro-
mise between complexity and functionality. An example of simplicity is that there are no specific
routines for trapezoidal matrices, since this fact would increase the number of parameters in the
routines. However, in order to increase functionality, implicitly transposed operands are considered
because, otherwise, the user should transpose the matrix previously and this operation may be
highly expensive due to the amount of memory accesses.

In summary, the BLAS routines are organized into three levels, named after the number of
computations performed in each one:

• Level 1: Operations with vectors (lineal order of computations).

• Level 2: Matrix-vector operations (quadratic order of computations).

• Level 3: Matrix-matrix operations (cubic order of computations).

Regarding performance, the differences among the three levels is due to the ratio between the
number of computations and the amount of data. This ratio is crucial in architectures with a
hierarchical organization of memory as, in case the number of operations is higher than the amount
of data accessed, it is possible to perform several operations per memory access and, consequently,
increase the productivity. Therefore, the three levels are also defined according to the ratio between
the number of computations and the data needed by the operation:

• Level 1: The number of computations and data grows linearly with the problem size.

• Level 2: The number of computations and data grows quadratically with the problem size.

• Level 3: The number of computations grows cubically with the problem size, while the amount
of data grows quadratically only.

Multi-threaded versions of BLAS for multiprocessors with shared memory deserve special at-
tention. Those versions implement a multi-threaded code that distributes the computations among
the processor cores in order to make an efficient use of the resources. Such implementations are
especially useful for BLAS-3 routines.

The blocked BLAS-3 routines have two additional advantages [45]. On one hand, they allow
different processors to work on distinct blocks simultaneously and, on the other hand, within the
same block, operations on different scalars or vectors may be performed simultaneously.

From the performance point of view, the following conclusions can be extracted:

• The performance of BLAS-1 and BLAS-2 is constrained by the memory bandwidth.

• BLAS-3 is the most efficient level, due to the fact that a higher number of computations can be
performed per memory access. In addition, the BLAS-3 are more suitable for parallelization,
providing significant improvements on multiprocessor architectures with shared memory.

2.1.2 The BLAS library election

Among the great variety of BLAS implementations upon which to build, in this dissertation
we selected BLAS-like Library Instantiation Software Framework (BLIS) [95]. This instance of the
BLAS, which will be described in detail in Chapter 3, is an open-source framework developed at
The University of Texas at Austin that provides a framework to implement BLAS-like operations.
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The flexibility of this library is one of the main reasons behind its election, along with the complete
exposition of the code that allows the manipulation of the library at different points. Moreover, in
terms of performance, BLIS is competitive with other commercial and open-source libraries. Due
to these features, BLIS is the most suitable library, among those considered, to carry out the work
towards the objectives of this dissertation.

2.2 LAPACK

LAPACK [79] is a library that provides routines to solve fundamental linear algebra problems
via the current state in numerical methods. In the same vein as BLAS, LAPACK provides support
for dense matrices. However, it tackles more complex problems, for example, systems of linear
equations as well as linear least squares (LLS), eigenvalue and singular value problems. LAPACK
emerged as the result of a project started in the late 80s. The objective was to obtain a library that
gathered the functionalities and improved the performance of EISPACK [54] and LINPACK [39].
Those libraries, designed for vector processors, do not provide acceptable performance on current
high performance processors, with segmented pipelines and hierarchical memories. The main reason
of their inefficiency is the fact that they are based on BLAS-1 operations, which do not make
an optimal use of the hierarchical memory for the reasons exposed earlier in this chapter. The
performance improvements of LAPACK arise from a reorganization of the algorithms in order to
make an intensive use of the efficient level-3 BLAS.

Regarding the integration of new algorithms, improvements were introduced in almost all linear
algebra problems supported by the library, being especially relevant those applied to the solution
of eigenvalue problems.

For multiprocessor systems, LAPACK extracts parallelism from within a parallel version of
BLAS. In other words, LAPACK routines do not include any type of explicit parallelism in the
code, but rely on a multithreaded implementation of BLAS for this purpose.

2.3 Target architectures

2.3.1 Power consumption

Supercomputers are key nowadays in solving challenging problems from very different areas
(from engineering design, and financial analysis to disaster prediction); however, they also incur a
huge power consumption, not only due to the computation, but also for cooling. For decades, per-
formance and price/performance have been the natural targets of the supercomputing community,
looking for the fastest computer (in terms of FLOPS) as advocated in the TOP500 [4] list. In this
sense vast efforts have been made and supercomputers’ performance has grown from 59.7 billions of
floating-point arithmetic operations per second (GFLOPS) in 1993 to 93,014.6 TFLOPS in 2017.

The performance gains in supercomputers has been largely attained via the combined increase
of the number of processors in the system, the amount of transistors per processor, and the pro-
cessor’s frequency. Nevertheless, power consumption was not considered as a main factor to take
into account until mid of the last decade. The reliable operation of supercomputers depend on
the continuous cooling of the machine, which results in enormous costs due to electrical power
consumption. For example, the Chinese Sunway TaihuLight, ranked as the top supercomputer in
the June 2017 TOP500 list consumes 15 MW. Considering that one MW costs approximately one
million dollar per year, the cost of operating and cooling down that system is around 15 million
dollars per year.
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Energy consumption came officially into the picture a decade ago, when the Green500 [1] list
was created. Since that moment, different approaches have been taken in order to improve the
energy efficiency of supercomputers. The improvement of energy efficiency has been impressive
over the last ten years, moving from 0.4 GFLOPS/W in 2008 to 11.1 GFLOPS/W in 2017. Part of
this improvement is due to heterogeneity via hardware accelerators, as the introduction of Graphics
Processing Units (GPUs) and manycore processors (e.g., Intel Xeon Phi) added more energy effi-
cient resources to the traditional multi-core systems through the combination of cores of different
nature. However, the supercomputing community is still looking for new alternatives in order to
reduce energy consumption. For that reason a new approach with low-power architectures has been
taken. Fujitsu announced recently the use of ARMv8-based cores for their first exascale supercom-
puter, the Post-K system [53]. In the same line, the Marenostrum 4 supercomputer [32], from
Barcelona Supercomputing Center, will include the same technology as an update of the current
supercomputer.

The Mont-Blanc project [3] is the reference example of the low-power architecture trend in
supercomputing. This project, started in 2011, advocates for the assembly of supercomputers from
low-power processors, more specifically mobile systems-on-chips (SoCs). Several prototypes have
been created as an output of the project, starting with Tibidabo in 2011, which features Nvidia
Tegra2 SoCs with two ARM Cortex-A9 at 1 GHz. The next prototype was Pedraforca (2013),
a moderate-scale prototype with 78 Tegra3 nodes with 4 Cortex-A9 cores running at 1.3 GHz.
The last prototype is Mont-Blanc (2015) which contains 1080 Exynos 5250 SoCs organized as 72
compute blades over two racks.

2.3.2 Asymmetric multi-core processors

Nowadays, diversity is the new trend in computing systems. Workloads of different nature
run on a wide variety of systems (from mobile devices to datacenters) and require resources with
distinct capabilities. Against this background, traditional multi-core systems are not enough; their
sophisticated and highly optimized cores are usually underutilized by most workloads yielding a
waste of energy. On the other hand, many-core systems that feature simpler cores with low power
consumption may not be sufficient for workloads that require high performance.

Heterogeneity emerged as a response to this situation, combining cores of different nature on
the same platform in order to provide a variety of resources that meet the necessities of distinct
workloads. A specific type of heterogeneity is that provided by AMPs, which combine two (or
more) types of cores in the same processor. These platforms provide more flexibility, thanks to
their processor specialization, which makes them target either performance or energy efficiency.

However, complexity in AMPs is increasing due to different reasons, such as the variety of cores
or the use of different instruction set architectures (ISAs) and, consequently, they are becoming
harder to program. Moreover, diversity has made terminology about AMPs confusing due to the
fact that many authors use different names to refer to the same type of platform. According to [77],
our definition of an AMP matches Physical asymmetric in [90] and Performance asymmetry in [69];
that is, two sets of cores with same ISA but different microarchitecture.

2.3.2.1 ARM big.LITTLE

All the experimentation carried out throughout this thesis has been performed on a ARM
big.LITTLE platform. This technology, designed by ARM, integrates LITTLE (or slower and
energy-saving) processor cores with big (or more powerful and power-hungry) cores. Both types of
processors are memory coherent and share the same ISA, but feature different microarchitectures
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Armv7-A/R Armv8-A/R Armv8-A

AArch32 AArch64

Floating-point 32-bit 16-bit*/32-bit 16-bit*/32-bit/64-bit
Integer 8-bit/16-bit/32-bit 8-bit/16-bit/32-bit/64-bit 8-bit/16-bit/32-bit/64-bit

Table 2.1: Size of NEON operations on ARM architectures.

in order to implement their performance and power characteristics required by the big.LITTLE
concept. The big cores are more complex, apply out-of-order execution, and have a multi-issue
pipeline. The LITTLE cores are simpler, their execution is in-order, and have a simple multistage
pipeline.

The big.LITTLE platforms used in our tests include ARM NEON [12] technology, a Single In-
struction Multiple Data (SIMD) architecture extension. In this technology, registers are considered
vectors of elements (of the same data type) that are processed simultaneously increasing the per-
formance of the processor. The data types and the architectures that support them are presented
in Table 2.1 (values marked with * refer to the ARMv8.2-A architecture).

2.3.2.2 Odroid

ODROID refers to a series of single-board computers manufactured by Hardkernel Co. Ltd.
that include some implementations of the big.LITTLE design announced by ARM in 2011. The
first generation of ODROID that implemented the big.LITTLE architecture (ODROID-XU) was
launched in 2013 and combined a single Cortex-A15 quad-core and a single Cortex-A7 quad-core
(Samsung Exynos 5410). This platform did not allow the simultaneous operation of both clusters,
an issue that was solved later with the ODROID-XU3.

For the tests presented in this thesis using an ODROID platform, we used either an ODROID-
XU3 or an ODROID-XU4 both furnished with a Samsung Exynos 5422 SoC. The ODROID-XU4
is the evolution of the ODROID-XU3, with similar performance and energy efficiency hardware,
but smaller board. Moreover, the ODROID-XU3 includes power sensors that are not present on
the ODROID-XU4 board. Hereafter ODROID will be used to refer indistinctly to any of these
platforms.

The ODROID SoC comprises an ARM Cortex-A15 quad-core processing cluster (big) plus an
ARM Cortex-A7 quad-core processing cluster (LITTLE), both implementing the ARMv7 micro-
architecture; that is a 32-bit architecture. Each Cortex core has its own private 32-Kbyte L1 (data)
cache. The four ARM Cortex-A15 cores share a 2-Mbyte L2 cache, and the four ARM Cortex-A7
cores share a smaller 512-Kbyte L2 cache; see Figure 2.1. Moreover, the two clusters access a
common 2-Gbyte DDR3 RAM. Additionally, the Cortex-A7 cores may operate from 200 MHz to
1.4 GHz, while the Cortex-A15 may work from 200 MHz to 2 GHz.

2.3.2.3 Juno

Juno is the first ARMv8-A 64-bit development board featuring a Cortex-A57 dual-core process-
ing cluster and a Cortex-A53 quad-core processing cluster. Each Cortex-A57 core has a private
48+32-Kbyte L1 (instruction+data) cache, while each Cortex-A53 core has a private 32+32-Kbyte
L1 (instruction+data) cache. The four Cortex-A57 cores share a 2-Mbyte L2 cache and the four
Cortex-A53 cores share a smaller 1-Mbyte L2 cache; both clusters access a common 8-Gbyte DDR3
RAM (Figure 2.2). Furthermore, the Cortex-A53 cluster may operate from 450 MHz to 850 MHz
and the Cortex-A57 from 450 MHz to 1.1 GHz.
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Figure 2.1: Exynos 5422 block diagram.

Figure 2.2: ARM Juno SoC block diagram.

2.3.3 Intel

For experiments with the thread-level malleability technique, we have used an Intel Xeon E5-
2603 v3. This platform features two homogeneous sockets with 6 cores each. Each core may run
in the frequency range 1.2-2.4 GHz, has a private 32 KByte L1 cache, and a private 256 KByte
L2 cache. All the cores in the same socket share a 20 MByte L3 cache. Moreover, the platform is
furnished with 64 GB of DDR3 RAM (Figure 2.3).

Although this platform is homogeneous or symmetric, it has been used to illustrate the advan-
tages of thread-level malleability in a simpler way. However, the initial approach tested on this
platform was adapted in order to be ported to the ODROID platforms as a part of this dissertation.

2.4 Measuring power consumption

Obtaining power dissipation measurements has been key in order to analyze the behavior of
the target DLA library on the different platforms. To do so, we have used PMLib, a portable
framework developed at Universitat Jaume I designed to interact with power measurement units.
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Figure 2.3: Intel Xeon block diagram.

The current implementation of PMLib provides an interface to access internal/external Watt-
meters and a number of tracing tools. Power measurement is retrieved by the application using
a collection of routines that allow the user to retrieve information from the power measurement
units, create counters associated with a device where power data is stored, start/continue/terminate
power sampling, etc. All this information is managed by the PMLib server, which is in charge of
acquiring data from the devices and sending back the appropriate answers to the invoking client
application via the proper PMLib routines. The PMLib server is implemented as two different
types of daemons in the framework: the external-PMLib server and the internal-PMLib server.
The former runs in a separate system and collects power samples from one or more Wattmeters
attached to the target platform where the application is running. In this case interferences from
the running daemon are avoided and noise is removed from the power measurements. However,
there is some information that is only accessible locally (like, e.g., power measurements from local
sensors). In those situations the use of the internal-PMLib daemon running in each node of the
target platform is used.

Figure 2.4 illustrates the PMLib framework and its interaction with the target application and
different tools, such as a performance tracing suite and a visualization tool. The starting point is a
scientific application, instrumented with PMLib, that runs on the target platform. Attached to the
application node(s) there are different internal/external power measurement devices (managed by
the external-PMLib daemon). The users’ code running on the target platform makes calls to the
PMLib Application Programming Interface (API) to instruct the external-PMLib server [14] to
do distinct operations (e.g., start/ stop collecting the data captured by the power measurement de-
vices). Once the users’ application is executed, and thanks to the smooth integration of the PMLib
traces with different tracing suites (e.g., Extrae [87], TAU [88], VampirTrace [61], HDTrace [70]),
the power trace can be inspected along with performance traces obtained from the tracing suites
with the appropriate visualization tool (e.g., Paraver [82]).

2.4.1 PMLib and big.LITTLE platforms

As explained in the previous section, PMLib is composed by two daemons. The external-PMLib
daemon is in charge of all the hardware mesuring devices, which can be either internal Direct
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Figure 2.4: PMLib diagram.

Current (DC) or external Alternating Current (AC) Wattmetters. On the other hand, the internal-
PMLib server manages information that can be retrieved only locally; this information includes the
C-states of the processor and power measurements from energy sensors (e.g., RAPL [65], NVML
counters [80], ARM current sensors [62]).

Power samples on the big.LITTLE ODROID-XU3 platform are collected in this thesis using
the internal-PMLib daemon and the current/voltage sensors present in this SoC. There exist four
sensors on the ODROID-XU3 that measure the power consumption of the Cortex-A15 cluster,
Cortex-A7 cluster, GPU and DRAM respectively every 250 ms. The PMLib framework retrieves
power consumption samples from this platform at 4Hz, and dumps them to the standard output
or a text/paraver file.

2.5 Summary

In this chapter, we presented the BLAS and LAPACK DLA libraries, which are used through-
out this thesis. We also described the platforms used in our experiments, two ARM platforms
with different architectures and distinct architectures. Finally, we reviewed PMLib, a framework
designed to collect power samples from a wide variety of Wattmeters.
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CHAPTER 3

Basic Linear Algebra Subprograms (BLAS)

In this chapter, a wide description of two (BLAS-2 and BLAS-3) out of the three BLAS levels
is performed for the BLIS library. This specific library is used for the study since its structure
allows to adopt a low level approach and extract detailed information about the source of the costs
of the operations, something that is not possible with other solutions that follow a black-box ap-
proach,.e.g., MKL. An adaption of the library for AMPs is presented along with a detailed study
of the performance and energy consumption gains derived from this new version. That implemen-
tation includes a full asymmetry-aware BLAS-3 version and two asymmetry-aware routines (symv
and gemv) from BLAS-2. The asymmetry-aware version of the library is tested on two recent ARM
big.LITTLE SoCs, both implementing a particular class of heterogeneous architecture that com-
bines a few high performance (but power hungry) cores with a collection of energy efficient (though
slower) cores. In order to carry out a complete study, different operand shapes and precisions are
used in the tests.

3.1 Blas-like Library Instantiation Software (BLIS)

BLIS is a framework for instantiating the functionality of BLAS that increases the productivity
of developers when implementing BLAS and BLAS-like operations. In the same vein as BLAS,
BLIS is organized in three levels (hereinafter named as BLIS-x), plus 4 sublevels in BLIS-1, that
provide the same functionality as BLAS, but also offers additional options that allow the user to
implement tuned operations thanks to its open source philosophy:

• Level-1 is composed of 4 sublevels that tackle operations with operands of different nature:

– Level-1v targets operations on vectors.

– Level-1d tackles element-wise operations only on matrix diagonals.

– Level-1m performs element-wise operations on matrices.

– Level-1f focus on fused operations on multiple vectors, meaning that one call to the
routine performs the specific operation on f vectors simultaneously.

• Level-2 is in charge of operations with one matrix and (at least) one vector operand.
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• Level-3 deals with operations that take one or more matrices as operands.

BLIS follows the GotoBLAS approach [57] but further modularizes operations or kernels in
order to isolate a micro-kernel. This micro-kernel performs the targeted operation and is written
in assembly or using vector intrinsics, bringing out the most of the underlying architecture. Thus,
to guarantee portability, the developer only needs to implement the micro-kernel in order to obtain
an implementation for a different architecture. In addition, if high-performance is desired, a few
configuration parameters need to be adjusted to optimize the micro-kernel and the loops around it.

The configuration parameters of BLIS are mr and nr, referring to register configuration pa-
rameters, and mc, kc and nc, identified as cache configuration parameters. Register configuration
parameters are essential in the implementation of the micro-kernel and their values depend on the
throughput and latency of the SIMD units and the number of available registers. Moreover, the
cache configuration parameter kc is also crucial for the micro-kernel, since it defines the number of
updates that the micro-kernel performs. kc along with mc and nc dictate the strides of the loops
around the micro-kernel and their value depends on the size and associativity degree of the cache
levels. These cache configuration parameters are also used by the packing routines, which are in
charge of arranging data in memory in order to minimize cache misses. Given an input matrix and
the cache configuration parameters, the packing routine produces as an output a submatrix (or
micro-panel) of the dimension dictated by the cache parameters with its values arranged properly.
The goal, thus, is that the micro-panels obtained as the output of the packing routines fit in the
appropriate cache levels in order to fully amortize these transfers with enough computation from
within the micro-kernel, as explained in [73].

Moreover, BLIS offers multiple levels of multithreading for nearly all level-3 operations via
OpenMP or POSIX threads. This multi-level parallelism allows the partitioning of the matrices
in several dimensions to attain high performance on multi-core architectures. In order to encode
the information about the logical thread topology, the execution of all routines is encoded as a
control-tree, a recursive data structure that holds all the information necessary to combine the
basic building blocks offered by BLIS. The control-tree for a given BLAS-3 operation governs,
among others, which combination of loops have to be executed to complete the operation (that is,
the exact algorithmic variant to execute at each level of the general algorithm), the stride for each
loop (specific to each target architecture), and the exact points at which packing must occur. In
BLIS, there is a single control-tree per operation composed by as many recursive levels as loops
comprise the operation. Thus, when executing a BLIS-3 kernel, at a given level of the algorithm,
the control-tree indicates the loop stride of the current loop; whether any of the input operands
has to be packed at that point; the parallelism degree of the current loop; whether any of the input
operands needs to be transposed; and the next step of the algorithm (next loop or the micro-kernel
instantiation).

3.2 BLIS-3

In this section, we present the level-3 BLAS in BLIS (hereafter BLIS-3) and a detailed descrip-
tion of its multi-threaded implementation. Given that all BLIS-3 kernels rely on the general matrix
multiplication (gemm) , this operation is explained in the first place. Next, we describe how the
same idea presented for the gemm is extended to the rest of BLIS-3 operations. Finally, we describe
the triangular system solve (trsm) due to its specific features.
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3.2.1 General matrix-matrix multiplication (gemm)

gemm is a crucial operation for the optimization of the Level-3 BLAS [47], as portable and highly
tuned versions of the remaining Level-3 kernels are in general built on top of gemm. As exposed
in [68], all BLAS-3 kernels can be implemented by means of gemm if a suitable partitioning of the
matrices is performed, since gemm is applied to some of these partitions, and the “non-gemm-wise”
partitions can be handled by Level-1 and/or Level-2 kernels.

Modern high-performance implementations of gemm for general-purpose architectures , includ-
ing BLIS and OpenBLAS, follow the design pioneered by Goto [59]. BLIS in particular implements
the gemm C = α·A·B+β ·C, where the sizes of A, B, C are respectively m×k, k×n, m×n, as three
nested loops around a macro-kernel plus two packing routines (see Loops 1–3 in Figure 3.1). The
macro-kernel is then implemented in terms of two additional loops around a micro-kernel (Loops 4
and 5 in Figure 3.1). In BLIS, the micro-kernel is typically encoded as a loop around a rank–1 (i.e.,
outer product) update using assembly or with vector intrinsics, while the remaining five loops and
packing routines are implemented in C.

Figure 3.2 illustrates how the loop ordering, together with the packing routines and an ap-
propriate choice of the BLIS cache configuration parameters orchestrate a regular pattern of data
transfers through the levels of the memory hierarchy. In practice, the cache parameters nc, kc and
mc, and the register parameters nr and mr dictate the strides of the five outermost loops with the
goal of streaming a kc × nr micro-panel of Bc, say Br, and the mc × kc macro-panel Ac into the
FPUs from the L1 and L2 caches, respectively; while the kc × nc macro-panel Bc resides in the L3
cache (if present).

Loop 1 for jc = 0, . . . ,n− 1 in steps of nc

Loop 2 for pc = 0, . . . ,k − 1 in steps of kc
B(pc : pc + kc − 1,jc : jc + nc − 1) → Bc // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc

A(ic : ic + mc − 1,pc : pc + kc − 1) → Ac // Pack into Ac

Loop 4 for jr = 0, . . . ,nc − 1 in steps of nr // Macro-kernel
Loop 5 for ir = 0, . . . ,mc − 1 in steps of mr

Cc(ir : ir + mr − 1,jr : jr + nr − 1) // Micro-kernel
+= Ac(ir : ir + mr − 1,0 : kc − 1)
· Bc(0 : kc − 1,jr : jr + nr − 1)

endfor
endfor

endfor
endfor

endfor

Figure 3.1: High performance implementation of gemm in BLIS. In the code, Cc ≡ C(ic : ic+mc−
1,jc : jc + nc − 1) is just a notation artifact, introduced to ease the presentation of the
algorithm, while Ac,Bc correspond to actual buffers that are involved in data copies.

The multi-threaded version of gemm integrated in BLIS exploits the concurrency available in
the nested five-loop organization at one or more levels (i.e., loops). Furthermore, the approach
takes into account the cache organization of the target platform (e.g., the presence of multiple
sockets, which cache levels are shared/private, etc.), while discarding the parallelization of loops
that would incur race conditions as well as those that exhibit too-fine granularity. The insights
gained from the analyses carried out in [94, 89] about the loop(s) to be parallelized in a multi-
threaded implementation of gemm can be summarized as follows:

• Loop 5 (indexed by ir). With this option, different threads execute independent instances of
the micro-kernel, while accessing the same micro-panel Br in the L1 cache. The amount of
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Figure 3.2: Data movement involved in the BLIS implementation of gemm.

parallelism in this case, dmc
mr
e, is scarce as, for many architectures, the optimal value for mc

is in the order of a few hundreds, and mr ∈ {4, 8} in general. Thus, if parallelized, the cost of
moving Br into the L1 cache may not be amortized over a sufficiently large number of flops.

• Loop 4 (indexed by jr). Different threads operate on independent instances of the micro-
kernel, but access the same macro-panel Ac in the L2 cache. The time spent in this loop
amortizes the cost of packing (and, therefore, moving) Ac from main memory into the L2
cache. The amount of parallelism, dnc

nr
e, is in general larger than in the previous case, as nc

is in the order of several hundreds up to a few thousands for many architectures, and often
nr ∈ {4, 8}.

• Loop 3 (indexed by ic). Each thread packs a different macro-panel Ac into the L2 cache and
executes a different instance of the macro-kernel. The number of iterations of this loop is
not constrained by the cache parameters, but instead depends on the problem dimension m.
When m is less than the product of mc and the degree of parallelization of the loop, Ac will be
smaller than the optimal dimension and performance may suffer. When there is a shared L2
cache, the size of Ac will have to be reduced by a factor equal to the degree of parallelization
of this loop in order to guarantee that Ac still fits in the appropriate cache level. However,
reducing mc is equivalent to parallelizing the first loop around the micro-kernel.

18



3.2. BLIS-3

• Loop 2 (indexed by pc). This is not a good choice because multiple threads simultaneously
update the same parts of C, requiring a mechanism to prevent race conditions.

• Loop 1 (indexed by jc). From a data-sharing perspective, this option is equivalent to ex-
tracting the parallelism outside of BLIS. This parallelization is reasonable in a multi-socket
system where each CPU (socket) has a separate L3 cache.

To summarize, these are general guidelines to decide which loops are good candidates to be
parallelized in order to fully exploit the cache hierarchy of a target architecture. At a glance, the
appropriate combination of loops to parallelize strongly depends on which caches are private or
shared. Usually, Loop 1 is a good candidate in a multi-socket platform with on-chip L3 caches;
Loop 3 should be parallelized when each core has its own L2 cache; and Loops 4 and 5 are convenient
choices if the cores share the L2 cache.

3.2.2 Generalization to BLAS-3

The specification of the BLAS-3 [47] basically comprises 9 kernels offering the following func-
tionality:

1. Compute the (general) matrix multiplication (gemm), as well as specialized versions of this
operation where one of the input operands is symmetric/Hermitian (symm/hemm) or trian-
gular (trmm).

2. Solve a triangular linear system (trsm).
3. Compute a symmetric/Hermitian rank-k or rank-2k update (syrk/herk or syr2k/her2k,

respectively).

The specification accommodates two data types (real or complex) and two precisions (single or
double), as well as operands with different “properties” (e.g., upper/lower triangular, transpose or
not, etc.). Note that hemm, herk, and her2k are only defined for Hermitian operators, providing
the same functionality as that of symm, syrk, and syr2k for symmetric inputs.

Kernel Operation Operands
A B C

gemm C := C + AB m× k k × n m× n

symm
C := C + AB or Symmetric m×m

m× n m× n
C := C + BA Symmetric n× n

trmm
B := AB or Triangular m×m

m× n –
B := BA Triangular n× n

hemm
C := C + AB or Hermitian m×m

m× n m× n
C := C + BA Hermitian n× n

trsm
B := A−1B or Triangular m×m

m× n –
B := BA−1 Triangular n× n

syrk C := C + ATA k × n – n× n

syr2k C := C + ATB + BTA k × n k × n n× n

herk C := C + AHA k × n – n× n

her2k C := C + AHB + BHA k × n k × n n× n

Table 3.1: Kernels of BLIS-3

In BLIS, all BLAS-3 kernels (Table 3.1) are implemented following the same structure as that
presented for gemm, featuring three nested loops that enclose two packing routines and a macro-
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kernel. The macro-kernel is in turn implemented in terms of two additional loops around a micro-
kernel. This gemm micro-kernel is used by all BLIS-3 operations, since it provides an optimal
implementation for the given architecture. Specific cases, such as symmetric, Hermitian and/or
triangular matrices are tackled in the macro-kernel (Loops 4 and 5) by adapting the loop strides
according to the operation parameters. For example, if the input matrix is symmetric, the macro-
kernel will be the same as in the gemm case, but it will be applied only to half of the matrix,
consequently, the loop strides will need to be modified accordingly.

Regarding the multi-threaded implementation, the same conclusions extracted for gemm can
be applied to the rest of BLIS-3. The only exception is trsm which will be discussed in the next
section. This means that, thanks to the common loop structure of all BLAS-3 operations and the
mechanisms provided by BLIS to this end, the user can parallelize one or more loops simultaneously
in any BLAS-3 kernel. More precisely, for multi-threaded BLIS implementations, the control-tree
will define which loops need to be parallelized and the level of concurrency to extract at each point
of the algorithm.

3.2.3 Triangular system solve (trsm)

As explained in previous sections, all BLIS-3 operations leverage the gemm micro-kernel. The
triangular system solve (trsm) needs, in addition, a specific micro-kernel to deal with the diagonal
blocks, where the triangular system is solved. Furthermore, this operation has some dependencies
that shrink the options when parallelizing multiple loops.

In BLIS, the execution of a triangular system solve A ·X = αB, where A is an m×m upper (or
lower) triangular matrix, B is the m × n right-hand side matrix, and the m × n X is the sought-
after solution requires both the invocation of the gemm micro-kernel and the instantiation of a
tailored gemm micro-kernel (hereinafter trsm micro-kernel) that performs the operation when the
blocks that comprise the diagonal of A are involved. This specific trsm micro-kernel performs the
triangular solve with multiple right-hand sides and, in combination with the optimized gemm micro-
kernel, provides an accelerated implementation of trsm. Nevertheless, a specific micro-kernel that
combines a gemm and a trsm subproblem in order to perform the triangular system solve (known
as fused gemm-trsm micro-kernel) can be implemented for the selected architecture. Between
these micro-kernels the best option is to use the fused gemm-trsm micro-kernel (if provided for
the architecture) because, in combination with the optimized gemm micro-kernel needed by the
blocks that not comprise the diagonal, will provide a fully optimized version of the trsm thanks to
the elimination of redundant memory operations that occur if two independent micro-kernels are
invoked. In this sense, in trsm operand B is completely packed while the amount of packed bytes
of A is only half of those featured by gemm.

Regarding the parallelization of trsm, due to the data dependencies present in the kernel, the
previous analysis presented for gemm is not valid. For those systems where the triangular factor
appears in the left-hand side of the operation, only Loops 1 and/or 4 can be parallelized. On
the contrary, if the triangular operand lies on the right-hand side of the operation, only Loops 3
and/or 5 can be targeted. If a different parallelization was performed, distinct threads would be
updating the same positions of matrix B incurring in race conditions.

3.3 BLIS-3 on ARM big.LITTLE

Given that BLIS does not provide a specific implementation for AMPs, the following experiment
was designed to analyse the behavior, when combining the existing implementation of BLIS with
an AMP (the Exynos 5422 SoC in our case), in terms of performance and energy, using gemm as
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an example. For the evaluation, given the guidelines in Section 3.2 and the lack of an L3 cache in
this chip, the following two-level parallelization strategy is adopted:

• Coarse-grain (or inter-cluster): Loop 1 is tackled using 2-way parallelism to statically dis-
tribute its iteration space between the two clusters. This loop (and also Loop 3) is a good
candidate for parallelization across cores with a proprietary and isolated L2 cache, as is the
case of each cluster in the Exynos 5422 SoC.

• Fine grain (or intra-cluster): Loop 4 is parallelized using 4-way parallelism to statically dis-
tribute its iteration space among the four cores of the same cluster. This loop (as well as
Loop 5) is a good candidate for parallelization across cores sharing a common L2 cache, as is
the case of cores in the same cluster of the Exynos 5422 SoC.

In addition, the cache configuration parameters are set to those that are optimal for the Cortex-
A15. Note that similar qualitative observations were obtained when parallelizing the alternative
three combinations of Loops 1/3 and 4/5; and/or when the cache parameters were configured using
the optimal values for the Cortex-A7.

Figure 3.3 illustrates the implications of the default BLIS scheduling strategy in terms of loop
partitioning and assignment to threads. In total, eight threads (one per core) are created and
bound to the cores so that in overall 8-way parallelism is extracted within BLIS. As shown in the
figure, the iterations of Loop 1 are distributed between two teams of threads. Each team is mapped
to a cluster (big in green and LITTLE in red) and all its members are in charge of executing the
assigned iterations, n/2 in this case. Then, in Loop 3, all threads execute m iterations. In Loop 4,
each single thread constitutes a different team, which is in charge of nc/4 iterations (note that, in
this case, two blocks of nc iterations are being processed by the two clusters). Finally, in Loop 5,
all threads take part of the same team again and perform mc iterations each. Here is important to
emphasize that the iteration space for all loops is homogeneously distributed across the cores (i.e.,
without taking into account the core type).

Figure 3.4 reports the performance in GFLOPS and energy efficiency in GFLOPS per Watt
(GFLOPS/W) using the (two-level) symmetric-static scheduling that parallelizes Loops 1 and 4.
For reference, we also include the results from a parallelization of Loop 4 that separately exploits
either the four cores in the Cortex-A15 cluster or the four cores in the Cortex-A7 cluster. The “Ideal”
line in the performance graph corresponds to the aggregated performance of the configurations that
use four cores of each of the two types in isolation (i.e., the performance of the four Cortex-A15 cores
plus the performance of the four Cortex-A7 cores). The “Ideal–combined” line in the energy graph is
an upper bound on the energy efficiency when both clusters are in operation. This is obtained using
PMLib (Section 2.4) and calculated as the aggregated performance of both clusters (Ideal) divided
by the power dissipated by the Cortex-A15 cores and Cortex-A7 cores when working in isolation
plus the power of the memory and GPU. As expected, this curve for the ideal energy efficiency
is above the results obtained when using only Cortex-A15 cores, but below the counterpart that
only employs the Cortex-A7 cores. These ideal curves represent theoretical upper bounds for the
performance and energy efficiency that can be attained when using an optimal scheduling strategy
that exploits the asymmetry of the architecture.

This experiment reveals that a naive symmetric-static workload distribution, which does not
consider the differences in the cache hierarchy or performance between the Cortex-A15 and the
Cortex-A7, exploits the full system (8 cores) to deliver only about 40% of the highest performance
that is observed when employing only the four Cortex-A15 cores. The reason is that, with this
approach, BLIS performs a static partitioning and mapping of the iteration space to the processing
cores in a homogeneous manner. This causes a severe workload imbalance, as the threads running
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Figure 3.3: Partitioning of the iteration space and assignment to threads/cores for a multi-threaded
BLIS implementation with 8-way parallelism that combines 2-way parallelism from
Loop 1 and 4-way parallelism from Loop 4. Threads in green and red are respectively
mapped to big and LITTLE cores.
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Figure 3.4: Performance (left) and energy efficiency (right) of the reference BLIS gemm using
exclusively one type of core in isolation, and the symmetric-static scheduling version
with a coarse-grain parallelization of Loop 1 and the fine-grain parallelization of Loop 4
using 4 threads per cluster.

on the Cortex-A15 rapidly process their chunks, but then have to wait for the threads running on
the slow Cortex-A7 cores to complete their work. The energy efficiency of the naive solution is also
dramatically affected, and this configuration delivers the worst energy results.
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In view of the results, we can state that the default approach adopted by BLIS to map BLAS-
3 kernels on a multi-threaded CPU presents two main drawbacks when applied to leverage the
asymmetric cores of an AMP:

• BLIS relies on a static partitioning and mapping of the loop iteration space among the threads,
oblivious of the computational power of the cores these iteration chunks are assigned to.
Therefore, independently of the chunk size and the specific loops that are parallelized, this
strategy can only yield an unbalanced distribution of the workload (basically, the micro-
kernels) among the asymmetric cores.

• In addition, BLIS employs constant values for the loop strides that, in order to attain high per-
formance, need to match the optimal configuration parameters determined by the core cache
organization. However, given that the system presents two different architectures (Cortex-
A15 and Cortex-A7), and thus two distinct optimal cache parameters, ideally one should
select different loop strides/configuration parameters for each type of core.

In conclusion, this experiment naturally motivates the need of an efficient alternative to the ho-
mogeneous symmetric-static scheduling partitioning of the iteration space integrated in the original
multi-threaded implementation of BLIS gemm.

3.4 Optimizing symmetric BLIS gemm on big.LITTLE

In order to implement an asymmetry-aware version of BLIS-3, it is important to carry out a
comparative study that makes it possible to measure how well BLIS will perform when extracting
the most of all the cores in the SoC. To this end, it is essential to analyze the behavior of both
architectures present in the platform, Cortex-A7 and Cortex-A15 in isolation.

3.4.1 Cache optimization for the big and LITTLE cores

An initial step in order to attain high performance with the implementation of BLIS gemm
requires the implementation of a specific micro-kernel for the target core in order to bring out
the best of the SIMD units and available registers. This optimization was unnecessary in this
work because this type of micro-kernels were already available in BLIS. After that, given a target
precision (single or double), its essential to determine the configuration parameters nc, kc, mc, nr,
and mr for a single ARM core of each type, Cortex-A15 and Cortex-A7, that match the cache
organization. The experimental effort towards this goal using ieee 754 double-precision arithmetic
is described next. The study in [73] shows that, in principle, this optimization is also possible
via analytic derivation. According to that work, the optimal values for the register parameters
mr and nr can be calculated taking into account the number of elements that can be hold in the
vector registers, the throughput of the SIMD fused multiply-add instructions and their latency.
Moreover, mc, kc and nc can be calculated from the size of the caches, the replacement cache policy
and the cache organization. As the authors probe in that work, their model provides very accurate
results for double precision, hitting or providing a value very close to that determined by the expert
developers.

The first aspect to note is that, in this architecture for double precision, nc plays a minor role
and, therefore, can be simply set to nc = 4,096. This is explained because, in BLIS, nc is connected
to the dimension of the L3 cache, which is not present in the Exynos 5422 SoC. Furthermore,
the micro-kernels for these core architectures and precision are thoroughly tuned with mr = 4
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and nr = 4. In consequence, the optimization of gemm in a single-core scenario boils down to
determining the optimal values of mc and kc for each type of core. For this purpose, independent
empirical searches using a single Cortex-A15 core and a single Cortex-A7 core were performed.
In both cases, a coarse-grain search to detect potential optimal regions was initially applied, and
the selected regions were further explored next with a finer granularity to detect the optimal
configuration parameters. The result of this process is illustrated in Figure 3.5, where the top and
bottom plots correspond to the coarse search and the fine-grain refinement, respectively.
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Figure 3.5: BLIS optimal cache configuration parameters mc and kc for the ARM Cortex-A15 (left)
and Cortex-A7 (right) in the Samsung Exynos 5422 SoC. The performance ranges from
red (lowest GFLOPS) to green (highest GFLOPS); the optimal (mc, kc) pair is marked
as a blue dot.

The optimal configurations were detected at mc = 152, kc = 952 for the Cortex-A15 core and
mc = 80, kc = 352 for the Cortex-A7 core. As could be expected, the optimal values for the
Cortex-A15 core are larger than those of the Cortex-A7 core, since the L2 cache of the former is
four times bigger. For both types of cores, the corresponding dimensions and the associative-degree
of the caches ensure that the micro-panel Br (kc×nr) fits into the L1 cache while the macro-panel
Ac (mc × kc) resides into the L2 cache. Note that these values were obtained for a single-threaded
version; consequently, when using several threads, the values may change in order to ensure that
several blocks should fit in a specific cache level.

3.4.2 Multi-threaded Evaluation of BLIS gemm on the big and LITTLE clusters

After determining the optimal configuration parameters for each core cache organization, we
analyze the performance and energy efficiency of a multi-threaded implementation of BLIS gemm
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that operates in a homogeneous (symmetric) system consisting of up to four cores from either the
Cortex-A15 cluster or the Cortex-A7 cluster.

In particular, given the guidelines exposed in Section 3.2, and the fact that the L2 cache is
shared among the cores of the same cluster, we adopt a static parallelization of Loop 4 using 1–4
threads/cores. Similar qualitative conclusions were obtained from a static parallelization of Loop 5.
In this section the two types of clusters are evaluated in isolation, so the scalability of the multi-
threaded gemm can be evaluated. In addition, the results of this experiment reveal the differences
in performance and energy efficiency between the two types of cores.
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Figure 3.6: Performance (left) and energy efficiency (right) of the BLIS gemm using exclusively
one type of core, for a varying number of threads.

The plots in Figure 3.6 show the performance and energy efficiency of the multi-threaded gemm
implementation in BLIS when using the Cortex-A15 and the Cortex-A7 clusters in isolation. Note
that, when calculating the energy efficiency of one type of cluster, the complementary (idle) cluster
is deactivated so that it only dissipates a minor power rate (less than 0.1 W). In consequence, only
the energy consumed by the active cluster and the memory is accounted for.

Focusing on performance first, the results expose that the Cortex-A15 cores deliver considerable
higher performance than their Cortex-A7 counterparts. Specifically, the former type of cores renders
an increase of 2.8 GFLOPS per added core when up to three cores are used, but the utilization of
the fourth core yields a smaller increase, of 1.4 GFLOPS only. In conjunction, the four cores of
the Cortex-A15 cluster attain a peak performance of 9.6 GFLOPS. For the Cortex-A7 cluster, the
peak performance is close to 2.4 GFLOPS, also attained with four cores.

Regarding energy efficiency, the Cortex-A7 offers the best results in terms of GFLOPS/W and
the benefits of increasing the number of threads are more significant when compared with those
obtained with the Cortex-A15 cores. Concretely, the energy efficiency attained with the complete
Cortex-A7 cluster is 70% higher than that observed with a single core of the same type. In contrast,
the best energy efficiency for the Cortex-A15 is only 14% higher than that measured with a single
Cortex-A15 core. This behavior can be explained using a detailed analysis of the power consumption
of each type of core. Figure 3.7 reports power consumption for Cortex-A15 and Cortex-A7 cores
when their number is increased. These results show that the increase in power consumption for
the Cortex-A15 cores is higher (3x) than for the Cortex-A7 (2×). This trend along with the non-
linear increase in performance for the big cores, which attain 3× higher performance when using
the whole cluster (against the 4× obtained for the Cortex-A7 cores), makes their energy-efficiency
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lower. Moreover, due to the same reason the most energy-efficient solution for big cores is obtained
with three cores instead of the complete cluster.
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Figure 3.7: Power consumption of the BLIS gemm for a matrix size of 4,096 using exclusively one
type of core, for a varying number of threads.

3.4.3 Asymmetric BLIS GEMM on big.LITTLE

This section proposes two asymmetry-aware strategies (static and dynamic) for workload schedul-
ing of the BLIS gemm micro-kernels as well as a refinement to exploit the SoC cache hierarchy.
Moreover, the impact of these techniques on performance and energy efficiency is evaluated. The
optimized implementations can be described, at a high level, as follows:

• Static-asymmetric scheduling (sas). This option statically partitions and assigns loop itera-
tions to different thread types taking into account the performance differences between fast
and slow cores.

• Cache-aware static-asymmetric scheduling (ca-sas). This strategy enhances sas by adapting
the loop strides to the distinct cache configurations of the two computing clusters.

• Cache-aware dynamic-asymmetric scheduling (ca-das). This option improves the previous
ones by replacing the static partitioning of the iteration space with a dynamic workload
distribution across clusters. For this reason, no previous knowledge about the computational
differences between the clusters is required.

In our modifications of the BLIS framework, control trees (presented in Section 3.1) have been
key in order to encode the differences between the original framework and our versions adapted
for AMPs without affecting the rest of the BLAS implementation. In particular, we next focus
on the necessary modifications and requirements to implement an asymmetric scheduling of the
loop iteration space to big and LITTLE cores, and the modification of the loop strides in order to
develop a cache-aware configuration for BLIS gemm.

3.4.3.1 Static-asymmetric scheduling (sas)

Taking into account the experiment presented in Section 3.3, the original multi-threaded imple-
mentation of BLIS gemm was revamped to distinguish between the distinct computational power
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of the two types of cores included in the ARM big.LITTLE architecture. In particular, the sas
version of BLIS gemm integrates the following two new features, which modify the behavior of the
default asymmetry-oblivious multi-threaded implementation at execution time: i) a mechanism to
create “fast” and “slow” threads, which are bound upon initialization of the library to the big
and LITTLE cores, respectively; and ii) a mechanism to decide which loop among those that are
parallelized needs to be partitioned and assigned to fast/slow cores asymmetrically. The number of
iteration chunks assigned to threads will thus no longer be the same. Instead, these numbers will
be set according to the capabilities of each type of core.

The reimplementation also comprises, as a configuration knob, an interface to specify the ratio
of performance between big and LITTLE cores, which should be known before run time. For the
specific loop that is selected as the candidate to partition the computational workload between the
two clusters, this configuration parameter controls the number of iteration chunks that are assigned
to each cluster. The amount of threads/cores of each type, performance ratio and specific loop to
be asymmetrically partitioned can thus be modified via ad-hoc environment variables; and they
can all be fixed at execution time in order to tune the behavior of the library to other big.LITTLE
setups (for example, to change the core frequency that affects the performance ratio between core
types).

This new functionality is fully configurable and has been embedded into the internal control-tree
structures that govern the parallelization of each loop in the general BLIS gemm algorithm.

Evaluation of sas

Given the memory organization of the Exynos 5422 SoC, and the guidelines for the paralleliza-
tion of BLIS gemm from Section 3.3, a two-level parallelization is defined as the combination of a
coarse-grain parallelization that distributes the workload between the two clusters (at Loop 1 or
Loop 3) and a fine-grain parallelization that partitions the workload among the cores in the same
cluster (at Loop 4 or Loop 5).

To illustrate this, Figure 3.8 depicts the distribution of the iteration space across big and
LITTLE cores (or threads bound to them) for an scenario in which the iteration space of Loop 1
is asymmetrically distributed between two teams (one composed of the big cores and the other
by the LITTLE ones), using a ratio of 3, so that the fast threads are assigned three times more
computations than the slow threads. Internally, Loop 4 is parallelized to distribute the work
statically among the cores of the same cluster, so that each thread is in charge of executing nc/4
iterations. Note that two iteration blocks are processed in parallel in both clusters. As in Figure 3.3,
all threads perform all iterations in Loop 3 and 5.

The combination of the coarse-grain and fine-grain parallelization strategies for sas yields four
direct parallelization schemes. Additionally, two more configurations are possible, combining the
coarse-grain parallelization of either Loop 1 or Loop 3 with the fine-grain parallelization of both
Loops 4 and 5. Because the qualitative conclusions that can be extracted from these parallelization
strategies are very similar, we only report the results when the iteration space is distributed between
the clusters in Loop 1 and the macro-kernel is partitioned among homogeneous cores in Loop 4. In
addition, the (distribution) ratios for the coarse-grain parallelization range from 1 to 7.

Figure 3.9 displays the results for this experiment. The evaluation shows that, when the ap-
propriate workload distribution is applied, the asymmetric-aware sas delivers a performance rate
that is close to that of the ideal case. The “Ideal” line in the performance graph corresponds to the
aggregated performance of the configurations that use four cores of each of the two types in isola-
tion (i.e., the performance of the four Cortex-A15 cores plus the performance of the four Cortex-A7
cores). In particular, the left-hand side graph reveals that the worst performance is achieved when
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Figure 3.8: Partitioning of the iteration space and assignment to threads/cores for a multi-threaded
BLIS implementation with 8-way parallelism that asymmetrically combines 2-way par-
allelism from Loop 1 (using a ratio between fast and slow cores of 3) and 4-way paral-
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Figure 3.9: Performance (left) and energy-efficiency (right) of the sas version of BLIS gemm with
a coarse-grain parallelization of Loop 1 and a fine-grain parallelization of Loop 4 using
4 threads per cluster.

the ratio is 1 (i.e., an homogeneous inter-cluster parallelization). Also, the performance grows until
a ratio of 5–6 is used; and above 6, the performance in general declines with a lower limit existing
at the line delivered by the Cortex-A15 cluster in isolation (not included in the figure for clarity).
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These results indicate that ratios below 5 map too much work to the Cortex-A7 cluster, and ratios
above 6 assign an excessive part of the work to the Cortex-A15 cluster.

For the largest tested problems, the increment of performance for sas compared with the con-
figuration that employs four Cortex-A15 cores only is close to 20%. However, sas offers lower
performance for the small problems, as the chunks assigned to the big and LITTLE cores are, in
those cases, too small to exploit the asymmetric architecture.

In terms of energy efficiency, when the appropriate workload distribution is in place, sas delivers
similar GFLOPS/W as the setup that exclusively employs the Cortex-A15 cluster (see Figure 3.23).
Moreover, the energy efficiency in this case attains 90% of the ideal estimation. On the other hand,
when the workload is unbalanced, the energy performance is greatly affected, as the fast threads
remain idle but active, polling and consuming energy, until the slow threads complete their work.

3.4.3.2 Cache-aware static-asymmetric scheduling (ca-sas)

The original implementation of BLIS contains a single control-tree per operation, which implies
that the gemm routine can only employ the optimal cache configuration parameters for either the
Cortex-A15 or the Cortex-A7. Our solution to this problem duplicates the control structure to
set different configuration values for mc and kc, depending on the type of core. Specifically, two
different control-trees are created upon initialization, for “fast” and “slow” threads, each setting the
optimal loop strides/cache parameters for a different core architecture. In addition, this mechanism
opens the door to the use of specific highly-tuned micro-kernels adapted to each micro-architecture
in the AMP (and, therefore, optimal values for mr and nr), depending on the type of core that
executes it. We note that, as argued earlier in Section 3.2, the performance of gemm is quite
independent of nc, since there is no L3 cache in the Exynos 5422 SoC. Furthermore, we leverage
the same micro-kernel for both the Cortex-A7 and Cortex-A15 clusters since, in this particular
SoC, it is optimal for both.

An important caveat of this approach is that there may be some dependencies between the
optimal configurations used for the clusters. Concretely, if the micro-kernels are distributed among
the Cortex-A15 and Cortex-A7 clusters by parallelizing Loop 1, independent buffers are used for
Ac and Bc, and no dependencies arise. However, if they are partitioned between the clusters by
parallelizing Loop 3, then the buffer for Bc is shared, and it is necessary to employ a common value
of kc for the Cortex-A15 and the Cortex-A7. In this scenario the parameter is set to kc = 952
in both control-trees, and a new (sub)optimal value for mc has to be obtained for the Cortex-A7
threads. In order to do that, we carried out a similar search as that exposed in Section 3.4.1, finding
the new optimal value at mc = 32 for the Cortex-A7 (taking into account that the kc parameter
depends on the Cortex-A15). With these new optimal parameters, the performance peak attained
with the Cortex-A7 cluster is slightly worse than that observed with the actual Cortex-A7-specific
optimal parameters. However, it is still higher than that obtained with the cache parameters for
the Cortex-A15 as, for those much larger values, the memory buffer Ac does not fit into the small
L2 cache of the Cortex-A7.

Comparison of sas and ca-sas

The combination of the coarse-grain and fine-grain parallelization strategies described in Sec-
tion 3.4.3.1 yields the same parallelization options for ca-sas. For the same reasons, we only report
next the results corresponding to an scenario where the iteration space is distributed between the
clusters across Loop 1, while the macro-kernel is partitioned within clusters in Loop 4, using (dis-
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Figure 3.10: Performance (left) and energy-efficiency (right) of the sas and ca-sas versions of
BLIS gemm with a coarse-grain parallelization of Loop 1 and a fine-grain paralleliza-
tion of Loop 4 using 4 threads per cluster.

tribution) ratios for the inter-cluster parallelization of 1, 3 and 5. For each distribution ratio, we
include two lines, corresponding to the use of two control-trees (ca-sas) and only one (sas).

The plots in Figure 3.10 illustrate that, for both metrics of interest, better results are ob-
tained with the option that integrates two control-trees. The increases of performance and energy
efficiency are a direct consequence of the accelerated execution of the workload assigned to the
Cortex-A7 cluster, derived from the use of more convenient cache configuration parameters for that
architecture. We note that the improvements at this point are only visible when too much work is
assigned to the Cortex-A7 cluster (i.e., for distribution ratios below 5). However, as we will expose
later, this strategy has a more visible impact when a dynamic workload distribution is adopted.

To conclude the evaluation of the ca-sas implementation of BLIS, we compare the four direct
combinations (parallelization options) of the coarse-grain (Loop 1 or Loop 3) and fine-grain (Loop 4
or Loop 5) options, for a concrete distribution ratio of 5, using two control-trees. Figure 3.11 reports
the outcome from this evaluation. The plots show that the fine-grain parallelization of Loop 4 yields
performance curves closer to that of the ideal case than the alternatives that parallelize Loop 5. The
reason is that nc (linked to Loop 4) is usually much larger than mc (linked to Loop 5) and, therefore,
it is easier to attain a more balanced workload distribution with this option. Although it is not
possible to leverage the actual optimal cache parameters specific to the Cortex-A7 cluster when
Loop 3 is parallelized, the plots also reveal that, when the fine-grain parallelization is performed in
Loop 4, there is no noticeable difference between distributing the computational workload in either
Loop 1 or in Loop 3; however the difference is present when the fine-grain parallelization is set in
Loop 5.

3.4.3.3 Cache-aware dynamic-asymmetric scheduling (ca-das)

The final step towards attaining a high performance implementation of BLIS gemm for an
AMP SoC integrates a mechanism that dynamically distributes the workload between the two
SoC clusters. The main advantage of this option is that a predefined distribution ratio becomes
unnecessary, although the target loop this feature is applied to still needs to be chosen with care.
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Figure 3.11: Performance (left) and energy-efficiency (right) of the ca-sas version of BLIS gemm
with a coarse-grain parallelization of either Loop 1 or Loop 3; combined with a fine-
grain parallelization of either Loop 4 or Loop 5, using a ratio 5 in both cases and 4
threads per cluster.

The candidates to apply a dynamic distribution are, obviously, Loop 1 and Loop 3, since
these have been previously identified as the best options to distribute the computational workload
between the two clusters. However, the cache parameter nc (linked to the stride of Loop 1) is often
in the order of several hundreds up to a few thousands and, therefore, in practice it is too large
to dynamically distribute the iteration space. In contrast, the cache configuration parameter mc

(linked to the stride of Loop 3) is usually in the order of a few hundreds, and thus it is a good
candidate to dynamically distribute the iterations. Diving into details, nc = 4,096 for both types of
cores, while mc = 32 and 152 for the Cortex-A7 and Cortex-A15 cores, respectively. In consequence,
the coarse-grain dynamic distribution of the workload will be carried out across Loop 3, with two
independent control-trees in place bound to “fast” and “slow” threads. Note that, like in the ca-
sas scheduling strategy, the buffer Bc is shared by both clusters and, in consequence, kc is set to
952 for both types of cores (cache-aware optimization).

The application of a dynamic scheduling strategy removes the static partitioning carried out
before Loop 3. This is replaced by a mechanism where, at each iteration of Loop 3, a single thread
bound to a “fast” core and a single thread bound to a “slow” core select the current chunk size,
which depend on the configuration parameter mc of each type of core. The selected workload
is broadcast to the remaining threads of the same type. The fine-grain parallelization remains
unmodified and targets Loop 4, Loop 5 or both. The chunk size selection is performed inside a
critical section that controls the execution of Loop 3. The overhead of this synchronization point is
fully amortized by the utilization of a more flexible workload distribution, except for small matrix
sizes, where a static partition is more convenient.

Evaluation of ca-das

This set of experiments presents a more reduced number of options, since Loop 1 was identified
as a poor choice to dynamically distribute the computational workload. We report results when the
iteration space is dynamically distributed between clusters across Loop 3, and the macro-kernel is
partitioned within clusters in either Loop 4 or Loop 5, using two control-trees (one for “fast” and
one for “slow” threads, ca-das ) or a single control-tree for both types of threads (das) in order
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to check which option delivers greater benefits. Additionally, for comparison purposes, we include
the performance lines of the best ca-sas strategy with a distribution ratio of 5.

The plots in Figure 3.12 reveal that, for both metrics of interest, the best results are attained
when the coarse-grain parallelization is dynamically applied to Loop 3 and the fine-grain paralleliza-
tion is done at Loop 4. However, for small matrices (r < 512), the coarse-grain static parallelization
at Loop 3 outperforms the results for the dynamic approach due to the overhead introduced by the
critical section that controls its execution and to the fact that the matrix dimension is too small
to perform a suitable distribution of the workload. Regarding the fine-grain parallelization, if it
is set across Loop 5, the results are inferior to those reported for the static approach, since the
amount of concurrency that can be extracted for Loop 5 is lower than for Loop 4 (see Figure 3.11
and the corresponding analysis for details). On the other hand, the plots show that the use of two
control-trees has a great impact on both metrics. The use of a common control-tree implies that
the chunk size assigned to both types of threads is the same. Therefore, due to the difference in
performance of the Cortex-A7 and Cortex-A15 clusters, this produces a severe load unbalance for
certain problem sizes.
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Figure 3.12: Performance (left) and energy-efficiency (right) of the ca-das and das versions of
BLIS gemm with a coarse-grain parallelization of Loop 3 and a fine-grain paralleliza-
tion of either Loop 4 or Loop 5, using 4 threads per cluster in both cases.

3.5 Asymmetric BLIS-3 Evaluation

The insights gained from the previous study about the asymmetry-aware gemm implementation
and the special structure of BLIS, which makes all BLAS-3 kernels rely on the gemm implementa-
tion, allowed us to adapt all routines in BLIS-3 in order to make them asymmetry-aware as well.
In this section, a detailed analysis of the performance of all BLIS-3 kernels is carried out to verify
the gains due to the asymmetry-aware implementation. In order to perform an exhaustive study,
different shapes for the operands are considered and alternative parallelizations are explored in
each case.

As exposed in the previous section, two different approaches can be used for scheduling: static
or dynamic. Consequently, in the remainder of this evaluation the letters “S” and “D” are used
to respectively indicate that a Static or a Dynamic schedule is applied. The number following
each letter identifies the loop to which this scheduling is applied. Thus, for example, D3S4 denotes
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a strategy that extracts inter-cluster dynamic parallelism from Loop 3 and intra-cluster static
parallelism from Loop 4.

3.5.1 Square operands in gemm

Following the solution presented in the previous section, “D3S4” and “D3S5” will be used to
refer to strategies based on a dynamic coarse-grain parallelization of Loop 3, combined with a static
fine-grain parallelization of either Loop 4 or Loop 5, respectively. To assess the efficiency of these
two options, we measure the GFLOPS rates they attain and compare those against an “ideal”
execution where the eight cores incur no access conflicts and the workload is perfectly balanced.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

Problem dimension m=n=k

GEMM on Exynos 5422 SoC

Ideal
D3S4
D3S5
ObS4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

Problem dimension m=n (k=256)

GEPP on Exynos 5422 SoC

Ideal
D3S4
D3S5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

Problem dimension m=k (n=256)

GEMP on Exynos 5422 SoC

Ideal
D3S4
D3S5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

Problem dimension n=k (m=256)

GEPM on Exynos 5422 SoC

Ideal
D3S4
D3S5

Figure 3.13: Performance of (general) matrix multiplication with square matrices: gemm; and
three rectangular cases with two equal dimensions: gepp, gemp, and gepm.

The top-left plot in Figure 3.13 reports the performance attained with the dynamic-static par-
allelization strategies for a matrix multiplication involving square operands only. The results show
that the two options, D3S4 and D3S5, obtain a large fraction of the GFLOPS rate estimated for
the ideal scenario, although the combination that parallelizes Loops 3+4 is consistently better.
Concretely, from m = n = k ≥ 2000, this option delivers between 12.4 and 12.7 GFLOPS, which
roughly represents 93% of the ideal peak performance. In this plot, we also include the results for
an strategy that parallelizes Loop 4 only, distributing its workload among the ARM Cortex-A15
and Cortex-A7 cores, but oblivious of their different computational power (line labelled as “ObS4”).
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With this asymmetry-agnostic option, the synchronization at the end of the parallel regions slows
down the ARM Cortex-A15 cores, yielding the poor GFLOPS rate observed in the plot.

3.5.2 gemm with rectangular operands

The remaining three plots in Figure 3.13 report the performance of the asymmetry-aware paral-
lelization strategies when the matrix-matrix multiplication kernel is invoked, (e.g., from LAPACK,)
to compute a product for the following “rectangular” cases (see Table 3.1):

1. gepp (general panel-panel multiplication) for m = n 6= k;
2. gemp (general matrix-panel multiplication) for m = k 6= n; and
3. gepm (general panel-matrix multiplication) for n = k 6= m.

In these three specialized cases, the two equal dimensions are varied in the range R = {100,300,500,
1000, 1500, . . . ,6000} and the remaining one is fixed to 256. (This specific value was selected because
it is often used as the algorithmic block size for many LAPACK routines/target architectures.)

The plots for gepp and gemp (top-right and bottom-left in Figure 3.13) show GFLOPS rates
that are similar to those attained when the same strategies are applied to the “square case” (top-
left plot in the same figure), with D3S4 outperforming D3S5 again. Furthermore, the performances
attained with this particular strategy, when the variable problem dimension is equal or larger than
2000 (11.8–12.4 GFLOPS for gepp and 11.2–11.8 GFLOPS for gemp), is around 90% of those
expected in an ideal scenario. We can thus conclude that, for these particular matrix shapes, this
specific parallelization option is reasonable.

The application of the same strategies to gepm delivers mediocre results, though. The reason
is that, when m = 256, a coarse-grain distribution of the workload that assigns chunks of mc =
(152, 32) iterations of Loop 3 to the ARM (Cortex-A15, Cortex-A7) cores may be appropriate from
the point of view of the cache utilization, but yields a highly unbalanced execution. This behavior
is exposed with an execution trace, obtained with the Extrae framework [87], in the top part of
Figure 3.14.

To tackle the unbalanced workload distribution problem, we can reduce the values of mc, at
the cost of a less efficient usage of the cache memories. Figure 3.15 reports the effect of this
compromise, revealing that the pair mc = (116, 24) for the ARM (Cortex-A15, Cortex-A7) cores
presents a better trade-off between balanced workload distribution and cache optimization. For this
operation, this concrete pair delivers 11.8–12.4 GFLOPS which is slightly above 80% of the ideal
peak performance. A direct comparison of the top and bottom traces in Figure 3.14 exposes the
difference in workload distribution between the executions with mc = (152, 32) and mc = (116, 24),
respectively.

3.5.3 Other BLIS-3 kernels with rectangular operands

Figure 3.16 reports the performance of the BLIS kernels for the symmetric matrix multiplica-
tion, the triangular matrix multiplication, and the triangular system solve when applied to two
“rectangular” cases involving a symmetric/triangular matrix (see Table 3.1):

• symp, trmp, trsp when the symmetric/triangular matrix appears to the left-hand side of
the operation (e.g., C := C +AB in symp);

• sypm, trpm, trps when the symmetric/triangular matrix appears to the right-hand side of
the operation (e.g., C := C +BA in sypm).
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Figure 3.14: Execution traces of gepm using the parallelization strategy D3S4 for a problem of
dimension n = k = 2000 and m = 256. The top plot corresponds to the use of
cache configuration parameters mc = (152, 32) for the ARM (Cortex-A15,Cortex-A7)
cores, respectively. The bottom plot reduces these values to mc = (116, 24). The blue
periods correspond to actual work while the pink ones represent synchronization (idle
time).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

Problem dimension n=k (m=256)

GEPM on Exynos 5422 SoC

Ideal
D3S4, mc=(152,32)
D3S5, mc=(152,32)
D3S4, mc=(116,24)
D3S5, mc=(116,24)
D3S4, mc=(76,16)
D3S5, mc=(76,16)
D3S4, mc=(40,8)
D3S5, mc=(40,8)

Figure 3.15: Performance of gepm for different cache configuration parameters mc.

The row and column dimensions of the symmetric/triangular matrix vary in the range R = {100,
300,500,1000, 1500, . . . ,6000} and the remaining problem size is fixed to 256. Therefore, when the
matrix with special structure is to the right-hand side of the operator, m = 256. On the other
hand, when this matrix is to the left-hand side, n = 256. Also, in the left-hand side case, and for
the same reasons argued for gepm, we set mc = (116, 24) for the ARM (Cortex-A15, Cortex-A7)
cores.

Let us analyze the performance of the symmetric and triangular matrix multiplication kernels
first. From the plots in the top two rows of the figure, we can observe that D3S4 is still the
best option for both operations, independently of the side. When the problem dimension of the
symmetric/triangular matrix equals or exceeds 2000, symp delivers 11.0–11.9 GFLOPS, sypm
10.8–11.0 GFLOPS, trmp 11.0–11.6 GFLOPS, and trpm 7.8–8.9 GFLOPS. Compared with the

35



CHAPTER 3. BASIC LINEAR ALGEBRA SUBPROGRAMS (BLAS)

corresponding ideal peak performances, these values approximately represent fractions of 91%, 95%,
90%, and 80%, respectively.
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Figure 3.16: Performance of two rectangular cases of symm (symp for C := C + AB and sypm
for C := C + BA), trmm (trmp for B := AB and trpm for B := BA), and trsm
(trsp for B := A−1B and trsm for B := BA−1).

The triangular system solve is a special case due to the dependencies intrinsic to this operation.
For this particular kernel, due to these dependencies, the BLIS implementation cannot parallelize
Loops 1 nor 4 when the triangular matrix is on the left-hand side. For the same reasons, BLIS cannot
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parallelize Loops 3 nor 5 when this operator is on the right-hand side. Given these constraints,
and the shapes of interest for the operands, we therefore select and evaluate the following three
simple static parallelization strategies. The first variant, S1S4, is appropriate for trsp and extracts
coarse-grain parallelism from Loop 1 by statically dividing the complete iteration space for this loop
(n) between the two clusters, assigning rc = 6× more iterations to the ARM Cortex-A15 cluster
than to the slower ARM Cortex-A7 cluster. (This ratio rc was experimentally identified in [28] as
a fair representation of the performance difference between the two types of cores available in these
clusters.) In general, this strategy results in values for nc that are smaller than the theoretical
optimal; however, given that the Exynos 5422 SoC is not equipped with an L3 cache, the effect of
this particular parameter is very small. At a finer grain, this variant S1S4 statically distributes the
iteration space of Loop 4 among the cores within the same cluster.

The two other variants are designed for trps, and they parallelize either Loop 3 only, or both
Loops 3 and 5 (denoted as S3 and S3S5, respectively). In the first variant, the same ratio rc is
applied to statically distribute the iterations of Loop 3 between the two types of cores. In the
second variant, the ratio statically partitions (coarse-grain parallelization) the iteration space of
the same loop between the two clusters and, internally (fine-grain parallelization), the workload
comprised by Loop 5 is distributed among the cores of the same cluster.

The plots in the bottom row of Figure 3.16 show that, for trsp, the parallelization of Loops
1+4 yields between 9.6 and 9.8 GFLOPS, which corresponds to about 74% of the ideal peak
performance; for trps, on the other hand, the parallelization of Loop 3 only is clearly superior to
the combined parallelization of Loops 3 and 5, offering 7.2–8.0 GFLOPS, which is within 65–75%
of the ideal peak performance.
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Figure 3.17: Performance of a rectangular case of syrk and syr2k.

To conclude the optimization and evaluation of the asymmetry-aware parallelization of BLIS,
Figure 3.17 illustrates the performance of the symmetric rank-k and rank-2k kernels, when operating
with rectangular operand(s) of dimension n × k. For these two kernels, we vary n in the range
R = {100,300,500,1000, 1500, . . . ,6000} and set k = 256 (see Table 3.1). The results reveal high
GFLOPS rates, similar to those observed for gemm, and again slightly better for D3S4 compared
with D3S5. In particular, the parallelization of Loops 3+4 renders GFLOPS figures that are 12.0–
12.4 and 11.8–12.3 for syrk and syr2k, respectively, when n is equal or larger than 2000. These
performance rates are thus about 93% of those estimated for an the ideal scenario.
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From a practical point of view, the previous experimentation reveals D3S4 as the best choice
for all BLIS-3 kernels, except the triangular system solve; for the latter kernel we select S1S4

when the operation/operands present a trsp-shape or S3 for operation/operands with trps-shape.
Additionally, in case m is relatively small, the BLIS-3 kernels optimized for the Exynos 5422 SoC
set mc = (116,24), but rely on the default mc = (152,32) otherwise.

3.5.4 BLIS-3 in 64-bit AMPs

In order to validate the generality of our approach for AMPs, we applied the same strategies to
a 64-bit processor in a Juno ARM development platform. The relevance of this experimentation is
motivated not only because we employ a platform with a different register size, but also because of
the higher asymmetry that it presents, since the Juno ARM comprises 4 slow cores and only 2 big
cores.

In order to implement the asymmetry-aware version of BLIS for the Juno platform, specific
micro-kernels were implemented for the Cortex-A57 and Cortex-A53 cores. In addition, cache and
register configuration parameters were calculated as the result of an independent experiment. The
values found for the register parameters were mr = 6 and nr = 8; while for the cache parameters
nc = 3,072 and kc = 240; mc was set to 48 for the Cortex-A53 and to 120 for the Cortex-A57.

Figure 3.18 reports the performance of the BLIS kernels on the Juno board, using matrices
with square operands (m = n = k). In the previous experiments, D3S4 was identified as the best
strategy to distribute the computational workload for all BLIS-3 routines except trsm. Therefore,
the same strategy was leveraged to produce the results in this graph comparing the performance
of all BLIS-3 routines. Moreover, for comparison purposes, the graph also includes a curve for the
ideal peak performance rate of gemm, a routine which usually delivers the highest performance
rate among all BLAS.

The results show that, for all routines, the D3S4 strategy delivers a large fraction of the GFLOPS
estimated for the gemm ideal scenario. Concretely, for m = n = k = 2000, this option renders
between 10.4 and 11.1 GFLOPS, which roughly represents 82–87% of gemm’s ideal peak perfor-
mance. For larger problem sizes, the graph reveals than even a larger fraction of the ideal is
achieved, yielding between 12 and 12.5 GFLOPS which corresponds to 92–96% of gemm’s ideal.
An additional observation from this experiment is that, for small problem dimensions, gemm and
symm consistently outperform the GFLOPS reported for all other routines, but for large problem
dimensions only trmm delivers slightly lower performance results.

3.6 BLIS-2

The routines in the Level 2 of BLAS target matrix-vector operations and, to this end, BLIS
provides the kernels described in Table 3.2, including those that work on Hermitian operators
(hemv, her, her2). Past development efforts for BLIS have been devoted to support highly
tuned micro-kernels and multi-threaded implementations for the Level-3 BLAS kernels [94, 89],
while the Level-1 and Level-2 BLAS micro-kernels were left out for future work. Furthermore,
the parallelization of these operations was also a pending task. Unfortunately, the experimental
analyses clearly exposed that the Level-2 BLAS are essential to improve the efficiency of some
LAPACK routines, for example the kernels that perform orthogonal reductions to condensed forms
for eigenvalue computations.
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Figure 3.18: Performance of BLAS-3 on Juno SoC.

Kernel Operation Operands
A x y

gemv
y := y + Ax or m× n n m
y := y + ATx n×m m n

symv y := y + Ax Symmetric n× n n n

trmv
x := Ax or

Triangular n× n n –
x := ATx

hemv y := y + Ax Hermitian n× n n n

trsv
y := Ax or

Triangular n× n n n
y := ATx

ger A := A + xyT m× n m n

syr A := A + xxT Symmetric n× n n –

syr2 A := A + xyT + yxT Symmetric n× n n n

her A := A + xxH Hermitian n× n n –

her2 A := A + xyH + yxH Hermitian n× n n n

Table 3.2: Kernels of BLIS-2

3.6.1 General matrix-vector multiplication (gemv)

The implementation of the Level-2 BLIS kernels follows a general structure that is illustrated
in this section through the general matrix-vector product gemv y := αMx+ βy, with the matrix
M of dimension m× n; and y, x vectors with m, n entries, respectively. For simplicity, we assume
hereafter that α = β = 1. This kernel is implemented in BLIS as two loops (see Loops 1 and 2 in
Figure 3.19) around two packing routines and a macro-kernel. The gemv macro-kernel contains
an additional loop (Loop 3 in Figure 3.19) around a micro-kernel that casts each update as a fused
vector-vector multiply-add [95]. The fusion factor depends on the width of the SIMD instructions
and allows the execution in parallel of as many updates as the fusion factor indicates. The packing
routines in the gemv kernel copy the contents of y, x into contiguous buffers yc, xc, and unpack
yc into the result vector y (if these vectors were stored with a non-unit stride). No packing is
performed on M since there is no reuse in the BLIS implementation of the general matrix-vector
product. This approach differs from that introduced in [67], which fuses the two gemv into a single
kernel, in order to reduce the volume of memory transfers. By adhering to the BLIS style though,
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the implementation maintains the loops around the macro-kernel which control parallelism and
pack data if necessary.

Loop 1 for ic = 0, . . . ,m− 1 in steps of mc

y(ic : ic + mc − 1) → yc // Pack into yc
Loop 2 for jc = 0, . . . ,n− 1 in steps of nc

x(jc : jc + nc − 1) → xc // Pack x into xc

Loop 3 for jr = jc, . . . ,jc + nc − 1 in steps of nr // Macro-kernel
yc += M(ic : ic + mc − 1,jr : jr + nr − 1) // Micro-kernel
· xc(jr − jc : jr − jc + nr − 1)

endfor
endfor
yc → y(ic : ic + mc − 1) // Unpack yc

endfor

Figure 3.19: High performance implementation of the gemv kernel in BLIS. In the code, xc,yc are
buffers involved in data copies in case x,y are stored with a non-unit stride. Otherwise,
they simply refer to the corresponding entries of the original vectors.

3.6.2 Symmetric matrix-vector multiplication (symv)

As pointed out earlier, the structure presented previously is the general approach followed by
Level-2 operations. However, BLIS presents a slightly different implementation in the specific case
of the symmetric matrix-vector multiplication (or symv) kernel y := αMx + βy, where M is a
symmetric m ×m matrix; y, x are vectors of m components; and α, β are scalars. For simplicity,
hereafter we will assume that α = β = 1, and the strictly upper triangular part of M is not
accessed/referenced. This kernel is implemented in BLIS as a loop that traverses the matrix from
the top/left corner to bottom/right one. The loop body comprises three packing routines (note
that in the general case x is packed in Loop 2), two calls to the gemv kernel, and one invocation to
a specific macro-kernel for symv (see Figure 3.20). Note that, when invoking the gemv kernel from
the symv kernel, the entry point is Loop 2 from Figure 3.19, since Loop 1 from gemv is replaced
by Loop 1 of symv in order to perform the appropriate packs.

Loop 1 for ic = 0, . . . ,m− 1 in steps of mc

x(ic : ic +mc − 1) → xc // Pack x into xc
y(ic : ic +mc − 1) → yc // Pack y into yc
M(ic : ic +mc − 1, // Pack only lower

ic : ic +mc − 1)→Mc // triangle of M into Mc

yc += Mc · xc // symv macro-kernel
yc += M10 · x0 // gemv kernel
yc += MT

21 · x2 // gemv kernel
yc → y(ic : ic +mc − 1) // Unpack y

endfor

Figure 3.20: Implementation of symv in BLIS.

The symv macro-kernel is implemented as a separate loop around a micro-kernel (not included
in the figure). The macro-kernel performs the operations that involve the mc ×mc blocks on the
diagonal of M , and casts the corresponding update of yc in terms of a fused vector-vector multiply-
add [95]. All input/output operands of the symv macro-kernel (Mc, xc, yc) are packed since there
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is a mild reuse in the symmetric case. Furthermore, the symmetric structure of M is taken into
account to access and pack only the lower triangular part of this matrix into Mc.

3.7 BLIS-2 on big.LITTLE

As pointed out in Section 3.6, optimization efforts have been focused on BLIS-3 kernels, imple-
menting hand-tuned micro-kernels targeting different architectures. In addition, that is the only
BLIS level that allows the user to parallelize its operations. Since none of these features are avail-
able in BLIS-2 for the Cortex-A cores, the insights gained after the adaption of BLIS-3 to these
architectures will guide the development of an optimized version of BLIS-2. Therefore, we should
follow the next steps:

• Develop hand-tuned micro-kernels for ARMv7 architectures.

• Implement parallel BLIS-2 kernels that exploit the underlying architecture asymmetry.

• Find cache optimization parameters for multi-threaded BLIS-2.

In this Section, the development of specific micro-kernels for ARMv7 architectures is presented
along with the parallelization of the kernels for the general matrix-vector product and the symmetric
matrix-vector product. Moreover, the selection of the appropriate cache optimization parameters
is carried out.

3.7.1 Level-2 BLAS micro-kernels for ARMv7 architectures

To address the lack of BLIS-2 micro-kernels, we have developed hand-tuned micro-kernels for
the ARM Cortex-A7 and Cortex-A15 cores that exploit the NEON units in these architectures, em-
ploying software prefetching and SIMD instructions. More precisely, two micro-kernels are needed
for gemv implementation depending on the transposition or non-transposition of the input matrix,
and one micro-kernel is needed for symv.

Figure 3.21 reports the performance of symv (left) and gemv (right) for square matrices with
and without hand-coded micro-kernels for the non-transposed case. This plot shows remarkable
accelerations for the versions that integrate tailored (i.e., architecture-aware) micro-kernels. Con-
cretely, both kernels multiply the performance of the original codes by a factor close to 3× in the
Cortex-A7 architecture, and double it in the Cortex-A15 core. In consequence, all experiments in
the following employ our hand-tuned micro-kernels for symv and gemv.

3.7.2 Asymmetry-aware symv and gemv for ARM big.LITTLE AMPs

The current instance of BLIS offers multi-threaded implementations of the Level-3 BLAS, but
sequential versions only of the Level-1 and Level-2 BLAS, including symv and gemv. A straight-
forward solution to parallelize both kernels, on the AMP targeted in this work, is to extract the
concurrency from Loop 1 via, e.g., an OpenMP construct that dynamically distributes its iteration
space among the threads/cores; see Figure 3.20.

One important theoretical advantage of leveraging a dynamic schedule is that the workload is
automatically adjusted to the performance capabilities of the two different types of cores in the
ARM big.LITTLE AMP. Furthermore, by using distinct cache-aware values of mc for the Cortex-
A15 and the Cortex-A7, the kernels can take advantage of the cache memory hierarchies specific
to each type of core. For clarity, Figure 3.22 shows a simple example of this strategy applied to
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Figure 3.21: Impact of the use of architecture-aware micro-kernels on the performance of symv
(left) and gemv (right) for non-transposed matrices in each type of ARMv7 core
embedded in the Exynos 5422 SoC.

symv (note that a similar approach is followed for gemv), using two threads, one bound to a
big core (Cortex-A15) and one to a LITTLE core (Cortex-A7). These threads are identified in
the figure by means of the superscripts “b” and “L”, respectively, and compute different parts of
the output vector y. The workload distribution is actually implemented via an OpenMP critical
section, incurring a synchronization overhead that can be easily compensated by the improvements
in the workload balance. Additionally, the parallelization of Loop 1 does not require intermediate
buffers for the output vector y, as would be the case if the parallelization targeted any of the two
innermost loops of symv/gemv (see Loops 2 and 3 in Figure 3.19).

Figure 3.22: Dynamic workload distribution of Loop 1 in symv between one big core and one
LITTLE core.

A key issue that explains the poor scalability of symv is the low ratio between the number
of flops (2m2) and memory accesses ((m2)/2 + 2m at best) which turns symv into a memory-
bound kernel that, on current architectures, proceeds at the speed dictated by the bandwidth of
the memory layer where M is stored. (The same observation with slightly different memory count
applies to gemv.) As a consequence, the performance that can be achieved by symv in particular,
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Figure 3.23: Parallel performance of symv (left) and gemv (right) on the ARM big.LITTLE AMP
embedded in the Exynos E5422 SoC.

and by any other Level-2 BLAS in general, greatly depends on the memory bandwidth of the target
platform. Figure 3.23 offers graphical analyses of the scalability of symv and gemv on the Exynos
5422 SoC. An important observation from this experiment is that symv and gemv hardly scale
when increasing the number of big cores beyond 1, but they do with the LITTLE cores. The reason
is that a single big core almost saturates the memory bandwidth of the Cortex-A15 cluster so that
minor performance increments can be expected by adding more cores of this type. On the other
hand, the memory bandwidth available for the LITTLE cluster is able to feed all four LITTLE
cores. The plot in the figure also reports the GFLOPS rates for asymmetry-aware configurations of
symv and gemv that employ either 1 or 2 Cortex-A15 cores plus the full Cortex-A7 cluster (four
cores), showing little benefit from adding the second Cortex-A15 core.

3.7.3 Cache optimization for the big and LITTLE cores

Once specific micro-kernels are implemented for the architecture and the multi-thread is avail-
able for the operations, the next step to attain high performance is, given a target precision (single
in this case), determine the configuration parameters nc, kc,mc, nr, and mr for a single ARM core
of each type, Cortex-A15 and Cortex-A7, that fit the cache organization. However, given that the
BLIS-2 kernels are memory-bound operations and, consequently, the reuse of data is much lower
than it is in BLIS-3, the relevance of these values is now much lower, leaving us the option to work
with the optimal cache configuration parameters found for BLIS-3.

In order to optimize cache and register configuration parameters for BLIS-3 using single pre-
cision, we have to take into account the same considerations as those done for double precision.
As pointed out previously, when optimizing cache configuration parameters for BLIS-3, nc plays a
minor role in this architecture, so it is set to 4,096, a value provided by experts for single precision
on ARMv7 architectures. Moreover, the micro-kernels for these core architectures and precision
are tuned with mr = 4 and nr = 4. Therefore, the optimization of gemv and symv depends on
determining the optimal values of mc and kc. However, given that only mc affects the parallelization
of BLIS-2 kernels in the proposed approach, since its value will be used to distribute the workload
between the different types of cores, the original value for kc = 368 is maintained. Table 5.1 pro-
vides the summary of the cache optimization parameter values that were calculated as the outcome
of an independent experiment using a single Cortex-A7 and a single Cortex-A15 core.
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mr nr mc kc nc

ARM Cortex-A15 4 4 400 368 4,096

ARM Cortex-A7 4 4 88 368 4,096

Table 3.3: Parameters for optimal performance of the Level-3 kernels in BLIS on the ARMv7
big.LITTLE embedded in the Exynos 5422 SoC using real single-precision ieee arith-
metic.

3.8 Evaluation of Asymmetric BLIS-2

In this section, a detailed analysis of the performance of gemv and symv is carried out to
verify the gains due to the asymmetry-aware implementation. In order to extend the insights
gained from the previous tests, different shapes for the operands are considered and performance
results are compared against an “Ideal”, calculated as the accumulation of the performance rate
for one Cortex-A15 core and four Cortex-A7 cores. We also include, as a reference, the results for
one Cortex-A15 core and for four Cortex-A7 cores.

In all the tests the frequency is set to 1.4GHz for the Cortex-A7 cores and to 1.5GHz for
the Cortex-A15 cores. In addition, cache configuration parameters are set to their optimal values
(Table 5.1).

3.8.1 symv and gemv with square operands

As concluded in the previous study, the best option in order to increase performance in BLIS-2
kernels employs the whole Cortex-A7 cluster in combination with one Cortex-A15 core. Thus this
is the configuration used in the following. Figure 3.24 reports performance results for symv and
gemv when using square matrices (m = n = k). The results show that symv attains slightly higher
performance than gemv, reaching up to 90% of the “Ideal” performance (against 88% in the case
of gemv). Moreover, in both cases, the asymmetry-aware version of the operations outperforms
the results obtained when using a single Cortex-A15 and when employing the Cortex-A7 cluster in
isolation.
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Figure 3.24: Parallel performance of gemv (left) and symv (right) with square operands on the
ARM big.LITTLE AMP embedded in the Exynos E5422 SoC.
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3.8.2 gemv with rectangular operands

Figure 3.25 presents performance results in terms of GFLOPS, when gemv is applied to a
“rectangular” matrix. On the left-hand side plot we show the results when the number of rows of
the input matrix, dimension m, is fixed; while on the right-hand side plot the fixed dimension is n.
When comparing both plots, we see that the performance when the dimension m is fixed is lower
than when the dimension that is fixed corresponds to n. This behavior is due to the parallelization
approach, since the workload distribution is done at Loop 1, which means that higher parallelism
degree can be applied when the m-dimension is greater. This situation is shown on the right-
hand side plot. On the same vein, when fixing the m-dimension to a small value (left plot) the
performance decreases because it cannot take advantage of the multi-threaded implementation.
Moreover, the same reason explains why, using a small m keeps performance at 67% of the “Ideal”
performance (and even below the results obtained with one Cortex-A15, especially for small matrix
sizes), while increasing m (and fixing n = 256) delivers 75% of the “Ideal” performance rate.
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Figure 3.25: Parallel performance of gemv with rectangular operands on the ARM big.LITTLE
AMP embedded in the Exynos E5422 SoC.

3.9 Summary

After an overview of BLIS-3, in this chapter we have presented an optimized asymmetry-aware
gemm. We described the changes applied to the control-tree structure that governs the multi-
threaded parallelization of BLIS gemm in order to accommodate cache-aware configurations of the
loop strides for each type of core architecture that match the organization of its cache hierarchy. In
addition, two alternative scheduling strategies were introduced, asymmetric–static and dynamic, to
produce a 1-D partitioning of (the iteration space for) one of the outer loops of BLIS gemm between
the two clusters that yields a balanced distribution of the micro-kernels. Furthermore, an orthogonal
symmetric–static schedule was applied to map the workload of one of the inner loops across the
cores of the same cluster. The practical benefits of the cache-aware configurations and asymmetry-
aware scheduling strategies were demonstrated on the Exynos 5422, showing that the performance
attained by the optimized gemm on this platform is well beyond that of an architecture-oblivious
multi-threaded implementation and close to that of an ideal scenario. Moreover, an analysis of the
energy efficiency of the asymmetric architecture when running our optimized gemm was included,
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using the GFLOPS/W (billions of floating-point arithmetic operations, or FLOPS, per second and
Watt) metric, which assesses the energy cost of FLOPS.

We leveraged the flexibility of the BLIS framework in order to extend the asymmetry-aware high
performance implementation of gemm to the whole BLAS-3 for AMPs, taking into consideration
the operands’ dimensions and shape. The key of our development was the integration of a coarse-
grain scheduling policy, which dynamically distributes the workload between the two core types
present in this architecture, combined with a complementary static schedule that repartitions this
work among the cores of the same type. Our experimental results on the target platform in general
showed considerable performance acceleration for the BLAS-3 kernels, and more moderate for the
triangular system solve.

Finally, the insights gained from the optimization of the BLIS-3 were applied to two key BLIS-2
kernels, namely gemv and symv. We developed architecture-aware micro-kernels for both opera-
tions that exploit data locality in the access to the data in the registers. Furthermore, we proposed
a strategy to parallelize symv and gemv using only one type of cluster that carries over to the
full asymmetric architecture via the introduction of dynamic scheduling. Performance benefits of
this asymmetry-aware implementation were demonstrated through an experimental analysis that
reported the gains due to the implementation of specific micro-kernels as well as the parallelization
of the kernels.
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CHAPTER 4

Factorizations

The main objective of this chapter is to examine how well LAPACK performs on an AMP
when linked to our asymmetry-aware parallel version of BLIS, since the tests performed with BLIS
kernels in isolation provided good results in the previous chapter.

In this Chapter, we first analyze the computational performance and energy efficiency of LA-
PACK on the Exynos 5422 SoC when linked to our asymmetry-aware implementation of BLIS. In
this study, we are interested in assessing the (computational) performance of a “plain” migration;
that is, one which does not carry out significant optimizations above the BLIS-3 layer. We point out
that this is the usual approach when there exist no native implementation of the LAPACK for the
target architecture, as is the case for the ARM big.LITTLE-based system. The impact of limiting
the optimizations to this layer will be exposed via two crucial dense linear algebra operations [56],
illustrative of quite different outcomes:

• The Cholesky factorization for the solution of symmetric positive definite (s.p.d.) linear
systems (routine potrf from LAPACK).

• The LU factorization (with partial row pivoting) for the solution of general linear systems
(routine getrf from LAPACK).

The performance of these two LAPACK routines on top of the asymmetry-aware BLIS (for the
double precision case) is analyzed in terms of floating-point arithmetic throughput (GFLOPS) and
energy efficiency (GFLOPS/W which determines the energy cost per flop). These results are later
used in this chapter as a baseline to propose several techniques to improve performance. More
specifically, we apply the look-ahead technique in order to enhance the LU factorization and we
also propose malleability at thread level as a new approach that, in combination with look-ahead,
increases the performance.

4.1 Cholesky factorization

Given a dense s.p.d. matrix A ∈ Rn×n, its Cholesky factorization is given by A = UTU ,
where the Cholesky factor U ∈ Rn×n is upper triangular [56]. Listing 4.1 displays a simplified C
code that computes the Cholesky factorization of an n×n matrix stored starting at address A with
column leading dimension Alda. For simplicity, we assume hereafter that the matrix size is an
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integer multiple of the algorithmic block size b. The code overwrites the corresponding entries of
the original matrix with the Cholesky factor, leveraging the numerical kernels (or building blocks)
trsm, syrk from the Level-3 BLAS and a sort of recursive call to the Cholesky factorization to
handle a small diagonal block potrf.

#define A_ref(i,j) A[(j)*Alda+(i)]

for (k=0; k<n; k+=b_o) {

// Factor current diagonal block
POTRF( ..., b_i , &A_ref(k,k), Alda , &info );

if ( k+b<n ) {

// Triangular solve
TRSM( ..., &A_ref( k, k ), Alda , &A_ref( k, j ), Alda );

// Update trailing submatrix
SYRK( ..., &A_ref( k, i ), Alda , &A_ref( i, i ), Alda );

}

}

Listing 4.1: Blocked routine for the Cholesky factorization.

We next illustrate the impact of leveraging our platform-specific BLIS-3 from LAPACK using
the Cholesky factorization.

Figure 4.1 reports the GFLOPS and GFLOPS/W rates obtained with our right-looking variant
of the routine for the Cholesky factorization (potrf), executed on top of the asymmetry-aware
BLIS-3 (AA BLIS), when applied to compute the upper triangular Cholesky factor. Following the
strategy for comparison already applied to the BLIS-3, in the performance plot we include the
GFLOPS rate for the ideal configuration calculated as the addition of the performance rate for
the Cortex-A7 and Cortex-A15 clusters (scale in the left-hand side y-axis). Additionally, in both
plots we also include the execution of the factorization on top of the unmodified BLIS library using
either four Cortex-A15 (4A15) or four Cortex-A7 cores (4A7). Furthermore, we offer the ratio that
the actual GFLOPS rate represents compared with that estimated under the ideal conditions (line
labeled as Normalized, with scale in the right-hand side y-axis). All tests in this section were
performed with the processor frequency set to 1.6 GHz for the Cortex-A15 cores and 1.4 GHz to
the Cortex-A7 cores.
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Figure 4.1: Performance and energy efficiency of potrf for the solution s.p.d. linear systems.

For this particular factorization, as the problem dimension grows, the gap between the ideal
peak performance and the sustained GFLOPS rate rapidly shrinks. This is quantified in the column
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4.1. CHOLESKY FACTORIZATION

labeled as Normalized GFLOPS in Table 4.1, which reflects the numerical values represented by the
normalized curve (in red) in Figure 4.1. Here, for example, the implementation obtains over 70%
and 83% of the ideal peak performance for n = 2,000 and n = 3,000, respectively.

potrf
n Normalized Normalized

GFLOPS (%) flops of syrk (%)

500 26.73 36.67
1000 45.12 64.97
1500 59.49 75.90
2000 70.85 81.65

2500 77.46 85.18
3000 83.06 87.58
3500 86.05 89.31
4000 88.06 90.61

4500 89.39 91.63
5000 91.29 92.46
5500 91.42 93.15
6000 93.16 93.69

Table 4.1: Performance of matrix factorizations for the solution of s.p.d. and general linear sys-
tems (potrf) normalized with respect to the ideal peak performance (in %); and corre-
sponding theoretical costs of the underlying basic building block syrk normalized with
respect to the total factorization cost (in %).

This appealing behavior is well explained by considering how this algorithm, rich in BLAS-3
kernels, proceeds. Concretely, at each iteration, the right-looking version decomposes the calcula-
tion into three kernels, where one of them is a symmetric rank-k update (syrk) that involves a
row panel of k = b rows [56]. Furthermore, as n grows, the cost of this update rapidly dominates
the total cost of the decomposition, as shown in the column “Normalized flops” in Table 4.1, which
represents the percentage of flops performed by syrk in the Cholesky factorization depending on
the size of the input matrix. As a result, the performance of this variant of the Cholesky fac-
torization approaches that of syrk, reported in Figure 3.17. Indeed, it is quite remarkable that,
for n = 6,000, the implementation of the Cholesky factorization attains slightly more than 93%
of the ideal peak performance, which is basically the same fraction of the ideal peak observed for
syrk and a problem of dimension n = 6,000, k = 256. As exposed in Chapter 3, our asymmetry-
aware implementation of BLIS shows poorer performance for small matrix sizes due to the dynamic
workload distribution and, for the same reason, the performance attained decays for the Cholesky
factorization for matrix sizes below n=2000.

Focusing on energy efficiency, the first aspect to point out is that, as expected, the most energy-
efficient solution corresponds to the use of the Cortex-A7 only, though we note that this results
in significantly lower performance. Second, for small problem dimensions, the performance of the
asymmetry-aware BLIS-3 is similar to that obtained by using the Cortex-A15 cores only, yield-
ing lower energy efficiency for the former as that option keeps all cores in operation. Third, for
large problem dimensions, the energy efficiency of the asymmetry-aware BLIS-3 improves that of
the alternative which relies on the Cortex-A15 cores only, since the raise in power dissipation is
compensated by the increment in performance.
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CHAPTER 4. FACTORIZATIONS

4.2 LU

Given a matrix A ∈ Rm×n, its LU factorization produces lower and upper triangular factors,
L ∈ Rm×n and U ∈ Rn×n respectively, such that PA = LU , where P ∈ Rm×m defines a permutation
that is introduced for numerical stability [56]. Listing 4.2 displays a simplified C code that computes
the LU factorization of an m×n matrix stored starting at address A with column leading dimension
Alda. For simplicity, we assume hereafter that the matrix is square m = n and this dimension also
an integer multiple of the algorithmic size b. The code overwrites the corresponding entries of the
original matrix with the LU factors, leveraging the numerical kernels (or building blocks) trsm,
gemm from the Level-3 BLAS, and getrf for the panel factorization.

#define A_ref(i,j) A[(j)*Alda+(i)]

for (k=0; k<n; k+=b_o) {

// Factor current diagonal block
GETRF( ..., b_i , &A_ref(k,k), Alda , piv , &info );

// Interchanges to the panel
SWAP (..., &A_ref(k,k), Alda , piv);

if ( k+b<n ) {

// Interchanges to the trailing submatrix
SWAP (..., &A_ref(0,j), Alda , piv);

// Triangular solve
TRSM( ..., &A_ref( k, k ), Alda , &A_ref( k, j ), Alda );

if ( k+b<m ) {

// Update trailing submatrix
GEMM( ..., &A_ref( j, k ), Alda , &A_ref( k, j ), Alda , &A_ref( j, j ), Alda);

}

}

}

Listing 4.2: Blocked routine for the LU factorization.

Figure 4.2 displays the GFLOPS and GFLOPS/W attained by the routine for the LU factoriza-
tion with partial row pivoting (getrf), linked with the asymmetry-aware BLIS-3, when applied to
decompose square matrices of dimension m = n. All the experiments in this section were performed
employing ieee double precision arithmetic and the chip frequency was set to 1.3 GHz for both
types of cores.
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Figure 4.2: Performance and energy efficiency of getrf for the solution general linear systems.

50



4.2. LU

The actual performance and energy efficiency of the LU factorization follows the same general
trends observed for the Cholesky factorization, although there are some differences that are worth
discussing. First, the migration of the Cholesky factorization to the Exynos 5422 SoC was a story
of success, while the LU factorization reflects a less pleasant case. For example, the routine for the
LU factorization attains over 55.98% and 65.51% of the ideal peak performance for n = 2,000 and
n = 3,000, respectively. Compared with this, the Cholesky factorization attained more than 70%
and 83% at the same points. A case-by-case comparison can be quickly performed by inspecting
the columns reporting the normalized GFLOPS for each factorization in Tables 4.1 and 4.2.

getrf
n Normalized Normalized

GFLOPS (%) flops of gemm (%)

500 18.36 36.67
1000 35.47 64.97
1500 45.64 75.90
2000 55.98 81.65

2500 61.52 85.18
3000 65.51 87.58
3500 68.63 89.31
4000 68.45 90.61

4500 72.01 91.63
5000 73.63 92.46
5500 75.14 93.15
6000 76.61 93.69

Table 4.2: Performance of matrix factorizations for the solution of general linear systems (getrf)
normalized with respect to the ideal peak performance (in %); and corresponding the-
oretical costs of the underlying basic building block gemm with panel input operands
normalized with respect to the total factorization cost (in %).

Let us discuss this further. Like potrf, routine getrf casts most flops in terms of efficient
BLAS-3 kernels, in this case the matrix-matrix multiplication gemm with panel input operands
(previously analyzed as gepp in Chapter 3). Nonetheless, the moderate performance behavior of
getrf lies in the high practical cost (i.e., execution time) of the panel factorization that is present at
each iteration of the LU procedure. In particular, this panel factorization stands in the critical path
of the algorithm and exhibits a limited amount of concurrency, easily becoming a serious bottleneck
when the number of cores is large relative to the problem dimension. To illustrate this point, the
LU factorization of the panel takes 27.79% of the total time during a parallel factorization of a
matrix of order n = 3,000. Compared with this, the decomposition of the diagonal block present in
the Cholesky factorization, which plays an analogous role, represents only 10.42% of the execution
time for the same problem dimension.

This is a known problem for which there exist look-ahead variants of the factorization procedure
that overlap the update of the trailing submatrix with the factorization of the next panel, thus
eliminating the latter from the critical path [92]. As an alternative, one could rely on a runtime
to produce the same effect, by (semi-)automatically introducing a sort of dynamic look-ahead into
the execution of the factorization. However, the application of a runtime to a legacy code is not as
simple as it may sound and the development of asymmetry-aware runtimes is still immature.

51



CHAPTER 4. FACTORIZATIONS

4.3 Look-ahead in the LU factorization

In order to explore the impact of the look-ahead in the LU factorization, a new implementation
of the legacy code is needed to accommodate the new approach. To this end, we start from a basic
algorithm that is successively modified to accommodate different strategies of look-ahead to the
code. In addition, given that the implementation of the operation with look-ahead is not straight-
forward and in order to isolate the tests from the asymmetry of the targeted AMP, the initial
experiments of the look-ahead algorithms were carried out on an Intel Xeon E5-2603 v3 processor
(6 cores at a nominal frequency 1.6 GHz). Once the impact of look-ahead is tested on a symmetric
platform, the AMP will be our next target.

As shown earlier in Chapter 3, the multi-threaded instances of the BLAS for current multi-core
processor architectures take advantage of the simple data dependencies featured by the operations
to exploit loop/data-parallelism at the block level (hereafter referred to as block-data parallelism
or BDP). However, for more complex DLA operations, like those supported by LAPACK [11]
and libflame [93], exploiting task-parallelism with dependencies (TP) is especially efficient when
performed by a runtime that semi-automatically decomposes the computation into tasks and or-
chestrates their dependency-aware scheduling [48, 91, 5, 52]. For the BLAS kernels though, ex-
ploiting BDP is still the preferred choice, because it allows tighter control on the data movements
across the memory hierarchy and avoids the overhead of a runtime that is unnecessary due to the
(mostly) nonexistent data dependencies in the BLAS kernels. Exploiting both BDP and TP, in a
sort of nested parallelism, can yield more efficient solutions as the number of cores in processor
architectures continues to grow, and this combination will be our objective.

In this section we first review the conventional unblocked and blocked algorithms for the LU
factorization, and then describe how BDP is exploited from within them. Next, we introduce a
re-organized version of the algorithm that integrates look-ahead in order to enhance performance in
a nested TP+BDP execution. The implementations presented were linked with BLIS version 0.1.8
or a tailored version of this library especially developed for this work and, unless otherwise stated,
block-data parallelism (BDP) is extracted only from Loop 4 of the BLIS kernels. In addition,
since BLIS kernels are applied to different shapes of input matrices depending on the implemented
algorithm, we always refer to them with the generic name (i.e. gemm, trsm, etc.) independently
of the real shape of the operands.

4.3.1 Basic algorithms and Block-Data Parallelism (BDP)

There exist a number of algorithmic variants of the LU factorization that can accommodate
partial pivoting [56]. Among these, Figure 4.3 (left) shows an unblocked algorithm for the so-called
right-looking (RL) variant, expressed using the FLAME notation [60]. The RL variant performs
computations on the current panel traversing the matrix from left to right. Its main characteristic
is that, at each iteration, after factorizing the current panel, columns on the right of that panel
are updated immediately. For simplicity, we do not include pivoting in the following description
of the algorithms, although all our actual implementations, (and in particular those employed in
our experimental evaluation,) integrate standard partial pivoting. The cost of computing the LU
factorization of an m×n matrix, via any of the algorithms presented in this chapter, is mn2−n3/3
flops. Hereafter, we will consider square matrices of order n, for which the cost simplifies to 2n3/3
flops. For the RL variants, the major part of these operations are concentrated in the initial
iterations of the algorithm(s). For example, the first 25% iterations account for almost 58% of
the flops; the first half for 87.5%; and the first 75% for more than 98%. Thus, the key to high
performance mostly lies in the initial stages of the factorization.
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4.3. LOOK-AHEAD IN THE LU FACTORIZATION

Algorithm: [A] := LU unb(A)

A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do

(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22


where α11 is a scalar
rl1. a21 := a21/α11

rl2. A22 := A22 − a21aT12(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22


endwhile

Algorithm: [A] := LU blk(A)

A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do
Determine block size b(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

RL1.

[
A11

A21

]
:= LU unb

([
A11

A21

])
RL2. A12 := trilu(A11)−1A12

RL3. A22 := A22 −A21A12(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 4.3: Unblocked and blocked RL algorithms for the LU factorization (left and right, respec-
tively). In the notation, n(·) returns the number of columns of its argument, and
trilu(·) returns the strictly lower triangular part of its matrix argument, setting the
diagonal entries of the result to ones.

For performance reasons, DLA libraries compute the LU factorization via a blocked algorithm
that casts most computations in terms of gemm, in contrast to the unblocked algorithm, which
relies on BLAS-2 operations. Figure 4.3 (right) presents the blocked RL algorithm, which was
previously used in Section 4.2. For each iteration, the algorithm processes panels of b columns,
where b is the algorithmic block size. The three operations in the loop body factorize the “current”

panel Ap =

[
A11

A21

]
, via the unblocked algorithm (LU unb, RL1); and next update the trailing

submatrix, consisting of A12 and A22, via a triangular system solve (trsm, RL2) and a matrix
multiplication with panel operands (gemm, RL3), respectively. In practice, the block size b is
chosen so that the successive invocations to the gemm kernel deliver high FLOPS rates. If b is
too small, the performance of gemm will suffer, and so will that of the LU factorization. On the
other hand, reducing b is appealing as this choice decreases the number of flops that are performed
in terms of the panel factorization, an operation that can be expected to offer significantly lower
throughput (FLOPS) than gemm. (Concretely, provided n � b, the cost required for all panel
factorizations is about n2b/2 flops.) Thus, there is the tension between these two requisites, as it
will be analyzed in Section 4.3.4.1.

When the target platform is a multi-core processor, the conventional parallelization of the LU
factorization simply relies on multi-threaded instances of trsm and gemm to exploit BDP only.
Compared with this, the panel factorization of Ap, which lies in the critical path of the blocked RL
factorization algorithm, exhibits a reduced degree of concurrency. Thus, depending on the selected
block size b and certain hardware features of the target architecture (number of cores, floating-
point performance, memory bandwidth, etc.), this operation may easily become a performance
bottleneck, as shown in Figure 4.4 for a given iteration k.

To illustrate the performance relevance of the panel factorization, Figure 4.5 displays a fragment
of a trace corresponding to the LU factorization of a 10,000× 10,000 matrix, using the blocked RL
algorithm in Figure 4.3, with partial pivoting and “outer” block size b = bo = 256. (All traces were
obtained using Extrae version 3.3.0 [87].) The code is linked with multi-threaded versions of the
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Iter. k

(reduced concurrency)

RL1 Panel factorization

RL3

RL2

Figure 4.4: Exploitation of BDP in the blocked RL LU parallelization. A single thread team exe-
cutes all the operations, with less active threads for RL1 due to the reduced concurrency
of this kernel. In this algorithm, RL1 stands in the critical path.

BLIS kernels for gemm and trsm, using 6 threads in both cases. The panel factorization (panel)
is performed via a call to the same blocked algorithm, with “inner” block size bi = 32, and also
extracts BDP from the same two kernels. With this configuration, the panel factorization represents
less than 2% of the flops performed by the algorithm. However, the trace of the first four iterations
reveals that its practical cost is much higher than could be expected. (The cost of factorizing a panel
relative to the cost of an iteration becomes even larger as the iteration progresses.) Here we note
also the significant cost of the row permutations, which are performed via the sequential legacy code
for this routine in LAPACK (laswp). However, this second operation is embarrassingly parallel
and its execution time can be expected to decrease linearly with the number of cores, although
scalability may be limited because it is a memory-bound operation.

T1-T6

Figure 4.5: Execution trace of the first four iterations of the blocked RL LU factorization with
partial pivoting, using 6 threads, applied to a square matrix of order 10,000, with
bo = 256, bi = 32.

At this point, we note that the operations inside the loop body of the blocked algorithm in
Figure 4.3 (right) present strict dependencies that enforce their computation in the order RL1 ⇒
RL2 ⇒ RL3. Therefore, there seems to be no efficient manner to formulate a task-parallel (TP)
version of the blocked algorithm in that figure.
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4.3. LOOK-AHEAD IN THE LU FACTORIZATION

4.3.2 Static look-ahead and nested Task-Parallelism+Block-Data Parallelism
(TP+BDP)

A strategy to tackle the hurdle represented by the panel factorization in a parallel execution
consists in the introduction of look-ahead [92] into the algorithm. Concretely, during each iteration
of the decomposition this technique aims to overlap the factorization of the “next” panel with the
update of the “current” trailing submatrix, in practice enabling a TP version of the algorithm with
two separate branches of execution, as discussed next.

Algorithm: [A] := LU la blk(A)

Determine block size b

A→
(

ATL ATR

ABL ABR

)
, ABR →

(
AP

BR AR
BR

)
where ATL is 0× 0, AP

BR has b columns
AP

BR := LU unb
(
AP

BR

)
while n(ATL) < n(A) do(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

Determine block size b
% Partition into panel factorization and remainder(

A12

A22

)
→
(

AP
12 AR

12

AP
22 AR

22

)
where both AP

12, A
P
22 have b columns

% Panel factorization, TPF

PF1. AP
12 := trilu(A11)−1AP

12

PF2. AP
22 := AP

22 −A21AP
12

PF3. AP
22 := LU unb

(
AP

22

)
% Remainder update, TRU

RU1. AR
12 := trilu(A11)−1AR

12

RU2. AR
22 := AR

22 −A21AR
12

(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 4.6: Blocked RL algorithm enhanced with look-ahead for the LU factorization.

Figure 4.6 illustrates a version of the blocked RL algorithm for the LU factorization re-organized
to expose look-ahead. The key is to partition the trailing submatrix into two block column panels:(

A12

A22

)
→

(
AP12 AR12

AP22 AR22

)
(4.1)

where AP22 corresponds to the block that, in the conventional version of the algorithm (i.e., without
look-ahead,) would be factorized during the next iteration. This effectively separates the blocks
that are modified as part of the next panel factorization from the remainder updates, left and right
of the 2× 2 partitioning in (4.1), respectively. Proceeding in this manner creates two coarse-grain
independent tasks (groups of operations in separate branches of execution): TPF, consisting of PF1,
PF2, PF3; and TRU, composed of RU1 and RU2 (Figure 4.6). The “decoupling” of these block
panels thus facilitates that, in a TP execution of an iteration of the loop body of the look-ahead
version, the updates on AP12, A

P
22 and the factorization of the latter (operations on the next panel,

in TPF) proceed concurrently with the updates of AR12, A
R
22 (remainder operations, in TRU), as there

are no dependencies between TPF and TRU.
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By carefully tuning the block size b and adjusting the amount of computational resources
(threads) dedicated to each of the two independent tasks, TPF and TRU, a nested TP+BDP exe-
cution of the algorithm enhanced with this static look-ahead can partially or totally overcome the
bottleneck represented by the panel factorization, as shown in Figure 4.7 fo a given iteration k.

TRUTeam

TPFTeam

PF3

PF2

PF1

Iter. k RU2

RU1

Figure 4.7: Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead. The
execution is performed by teams PF and RU, consisting of tpf = 3 and tru = 8 threads,
respectively. In this algorithm, the operations on the (k + 1)-th panel, including its
factorization (PF3), are overlapped with the updates on the remainder of the trailing
submatrix (RU1 and RU2).

Figure 4.8 illustrates a complete overlap of TRU with TPF attained by the look-ahead technique.
The results in that figure correspond to a fragment of a trace obtained for the LU factorization
of a 10,000 × 10,000 matrix, using the blocked RL algorithm in Figure 4.6, with partial pivoting,
and outer block size b = bo = 256. For this experiment, the t = 6 threads are partitioned into two
teams: PF with tpf = 1 thread in charge of TPF, and RU with tru = 5 threads responsible for TRU.
The panel factorization (panel) is performed via a call to the same algorithm, with bi = 32, and
this operation proceeds sequentially (as PF consists of a single thread). The application of the row
permutations is distributed between all 6 cores. As argued earlier, the net effect of the look-ahead
is that the cost of the panel factorization no longer has a practical impact on the execution time of
the (first four iterations of) the factorization algorithm, which is now basically determined by the
cost of the remaining operations.

Given a static mapping of threads to tasks, b should balance the time spent in the two tasks as,
if the operations in TPF take longer than those in TRU, or vice-versa, the threads in charge of the
less expensive part will become idle, causing a performance degradation. This was already visible in
Figure 4.8, which shows that, during the first four iterations, the operations in TPF are considerably
less expensive than the updates performed as part of the remainder TRU. The complementary case,
where TPF requires longer than TRU, is illustrated using the same configuration, for a matrix of
dimension 2,000×2,000, in Figure 4.9. Unfortunately, as the factorization proceeds, the theoretical
costs and execution times of TPF and TRU vary, making it difficult to determine the optimal value
of b, which will need to be adapted during the factorization process.
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4.3. LOOK-AHEAD IN THE LU FACTORIZATION

Figure 4.8: Execution trace of the first four iterations of the blocked RL LU factorization with
partial pivoting, enhanced with look-ahead, using 6 threads, applied to a square matrix
of order 10,000, with bo = 256, bi = 32.

To close this section, note that there exist strict dependencies that serialize the operations
within each task: PF1 ⇒ PF2 ⇒ PF3 and RU1 ⇒ RU2. Therefore, there is no further TP in the
loop-body of this re-organized version. However, the basic look-ahead mechanism of level/depth 1
described in this subsection can be refined to accommodate further levels of TP, by “advancing”
to the current iteration the panel factorization of the following d iterations, in a look-ahead of
level/depth d. This considerably complicates the code of the algorithm, but can be seamlessly
achieved by a runtime system enhanced with priorities.

4.3.3 Advocating for Malleable Thread-Level Linear Algebra Libraries

Let us assume, for simplicity, that TPF and TRU consist only of the panel factorization involv-
ing AP22 (PF3) and the update of AR22 (RU2), respectively. Furthermore, let us consider a nested
TP+BDP execution using t = tpf + tru threads, initially with a team PF of tpf threads mapped to
the execution of PF3 and a team RU of tru threads computing RU2.

Ideally, for the LU factorization with look-ahead, we would like to perform a flexible sharing of
the computational resources so that, as soon as the threads in team PF complete PF3, they join
team RU to help in the execution of RU2 or vice-versa. However, in practice, if team RU joins team
PF performance will not be increased due to the low degree of parallelism of TPF. In this case we
propose a slightly different approach referred to as early termination. We next discuss these two
cases in detail.
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T1

T2

T4

T5

T6

T3

Figure 4.9: Execution trace of the first four iterations of the blocked RL LU factorization with
partial pivoting, enhanced with look-ahead, using 6 threads, applied to a square matrix
of order 2,000, with bo = 256, bi = 32.

4.3.3.1 Worker sharing (WS): Panel factorization less expensive than update

Our goal is to enable that, at each iteration of the algorithm for the LU factorization with
look-ahead, the threads in team PF that complete the panel factorization join the thread team RU
working on the update. In this scenario, the problem is that, if the multiplication to update AR22
was initiated via an invocation to a traditional gemm, this is not possible as none of the existing
high performance implementations of BLAS allows a modification of the number of threads working
on a kernel that is already in execution to be modified. The migration of threads from one task to
another is referred to as worker sharing (WS).

Suboptimal solution: Static re-partitioning

A simple workaround for this problem is to split AR22 into multiple column blocks, for example,
AR22 →

(
A1 A2 . . . Aq

)
, and to perform a separate call to BLAS gemm in order to exploit

BDP during the update of each block. Then, just before each invocation, the kernel’s code queries
whether the execution of the panel factorization is completed and, if that is the case, executes the
suboperation with the threads from both teams (or only those of RU otherwise). Unfortunately,
this approach presents several drawbacks:

• Replacing a single invocation to a coarse gemm by multiple calls to smaller gemm may offer
lower throughput because the operands passed to gemm are smaller and/or suboptimally
“shaped”. The consequence is that calling gemm multiple times will internally incur re-
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4.3. LOOK-AHEAD IN THE LU FACTORIZATION

packing and data movement overheads, which are more difficult to amortize because of the
smaller problem dimensions.

• The decision of which loops to partition for parallelism (note that AR22 could have alternatively
been split by rows, or into blocks), and the granularity of this partitioning is then placed upon
the programmer’s shoulders, who may lack the information that is necessary to make a good
choice. For example, if the granularity is too coarse, this will have negative effect because
the integration of the single thread in the update will likely be delayed. A granularity that is
too fine, on the other hand, may reduce the parallelism within the BLAS operation or result
in the use of cache blocking parameters that are too small.

Malleable thread-level BLAS (MTL)

The alternative that we propose exploits BDP inside RU2, but allows to change the number of
threads that participate in this computation even if the task is already in execution. In other words,
threads are viewed as a resource pool of workers that can be shared between different tasks and
reassigned to the execution of a (BLAS) kernel that is already in progress. Those BLAS libraries
that include this approach are hereafter referred to as malleable thread level (MTL) BLAS.

The key to our approach lies in the explicit exposition of the gemm internals (and other BLAS-3
kernels) in BLIS. Concretely, assume that RU2 is computed via a single invocation to BLIS gemm,
and consider that this operation is parallelized by distributing the iteration space of Loop 4 among
the threads in team PF (Figures 3.1 and 4.10). Then, just before Loop 4, we force the system
to check if the execution of the panel factorization is completed and, based on this information,
decides whether this loop is executed using either the union of the threads from both teams or only
those in RU ( Figure 4.11).

cm

nr

k c
cm

Threads

nrnc

nc

k c

...
...

+= .
cA cBc cc cccC(i  :i  +m  −1,j  :j  +n  −1)

Figure 4.10: Distribution of the workload among t = 3 threads when Loop 4 of BLIS gemm is
parallelized. Different colors in the output C distinguish the panels of this matrix
that are computed by each thread as the product of Ac and corresponding panels of
the input Bc.

Let us re-analyze the problems listed for the work-around solution that statically partitioned
the update of AR22, and compare them with our solution that implicitly embeds this partitioning
inside BLIS:

• The partitioning of gemm into multiple calls to smaller matrix multiplications does not occur.
Our solution performs a single call to gemm only, so that there is no additional re-packing nor
data movements. For example, in the case just discussed, Bc is already packed and re-used
independently of whether t or tru threads participate in the gemm. The buffer Ac is packed
only once per iteration of Loop 3 (in parallel by both teams or only RU).
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for =pc
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Iter. k

PF3

Figure 4.11: Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead and
WS. The execution is performed by teams PF and RU, consisting of tpf = 3 and tru = 8
threads, respectively. In this example, team PF completes the factorization PF3 while
team RU is executing the first iteration of Loop 3 that corresponds to RU2/gemm
(ic = 0). Both teams then merge and jointly continue the update of the remaining
iterations of that loop (ic = mc, 2mc, . . .). With the parallelization of gemm Loop 4,
one such “entry point” enables the merge at the beginning of each iteration of loop
ic.

• The decision of the best partitioning/granularity is left in the hands of BLIS, which likely has
more information to do a better job than the programmer.

Importantly, the partitioning occurs dynamically and is transparent to the programmer.

Figure 4.12 validates the effect of integrating a malleable version of BLIS into the same config-
uration that produced the results of Figure 4.8. A comparison of both figures shows that, with a
malleable version of BLIS, the thread executing the operations in TPF, after completing this task,
rapidly joins the team that computes the remainder updates, thus avoiding the idle wait.

Compared with BLIS, the same approach cannot be integrated into GotoBLAS because the
implementation of gemm in this library only exposes the three outermost loops of Figure 3.1, while
the remaining loops are encoded in assembly. The BLAS available as part of commercial libraries
is not an option either because hardware vendors offer black-box implementations which do not
permit the migration of threads.

60



4.3. LOOK-AHEAD IN THE LU FACTORIZATION

Figure 4.12: Execution trace of the first four iterations of the blocked RL LU factorization with
partial pivoting, enhanced with look-ahead and malleable BLIS, using 6 threads,
applied to a square matrix of order 10,000, with bo = 256, bi = 32.

4.3.3.2 Early termination: Panel factorization more expensive than update

The analysis of this case will reveal some important insights. In order to discuss them, let us
consider that, in the LU factorization with look-ahead, the panel factorization (PF3) is performed
via a call to the blocked routine in Figure 4.3 (right). We assume two blocking parameters: b = bo
for the outer routine that computes the LU factorization of the complete matrix using look-ahead,
and bi for the inner routine that factorizes each panel. (Note that, if bi = bo or bi=1, the panel
factorization is then simply done via the unblocked algorithm.) Furthermore, we will distinguish
these two levels by referring to them as the outer LU (factorization with look-ahead) and the
inner LU (factorization of the panel via the blocked algorithm without look-ahead). Thus, at each
iteration of the outer LU, a panel of bo columns is factorized via a call to LU blk (inner LU), and
this second decomposition proceeds to factorize the panel using a blocked algorithm with block size
bi (Figure 4.13).

From Figure 4.3 (right), the loop body for the inner LU consists of a call to the unblocked
version of the algorithm (RL1), followed by the invocations to trsm and gemm that update A12

and A22, respectively (RL2 and RL3). Now, let us assume that the update RU2 by the thread team
RU is completed while the threads of team PF are in the middle of the computations corresponding
to an iteration of the loop body of the inner LU. Then, provided the versions of the BDP versions
trsm and gemm kernels that are invoked from the inner LU are malleable, inside them the system
will perform the actions that are necessary to integrate the thread team RU, which is now idle, into
the corresponding (and subsequent) computation(s). Unfortunately, the updates in the loop body
of the inner LU involve small-grained computations (A12 and A22 have at most bo − bi columns,
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Figure 4.13: Outer vs inner LU and use of algorithmic block sizes.

decreasing by bi columns at each iteration), and little parallel performance can be expected from
it, especially because of partial pivoting.

In order to deal with this scenario, a different option is to force the inner LU to stop at the end
of the current iteration, to then rapidly proceed to the next iteration of the outer LU. We refer to
this strategy as early termination (ET). In order to do this though, the transformations computed
to factorize the current inner-panel must be propagated first to the remaining columns outside this
panel, introducing a certain delay in this version of the ET strategy due to the implementation of
the RL version of the LU factorization.

An alternative is to rely on a left-looking (LL) version of the LU factorization for the inner
LU, as discussed next. The blocked LL algorithm for the LU factorization differs from the blocked
RL variant (algorithm in the right-hand side of Figure 4.3) in the operations performed inside the
loop-body, which are replaced by

LL1. A01 := trilu(A00)
−1A01,

LL2.

[
A11

A21

]
:=

[
A11

A21

]
−
[
A10

A20

]
A01,

LL3.

[
A11

A21

]
:= LU unb

([
A11

A21

])
.

Thus, at the end of a certain iteration, this variant has updated only the current column of the inner-
panel and those to its left. In other words, no transformations are propagated beyond that point
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(i.e., to the right of the current column/inner-panel), and ET can be implemented in a straight-
forward manner, with no delay compared with an inner LU factorization via the RL variant.

A definitive advantage of the LL variant compared with its RL counterpart is that the former
implements a lazy algorithm, which delays the operations towards the end of the panel factorization,
while the second corresponds to an eager algorithm that advances as much computations as possible
to the initial iterations. Therefore, in case the panel factorization has to be stopped early, it is
more likely that the LL variant has progressed in the factorization further. For example, consider
the factorization of an m × n matrix that is stopped at iteration k < n. The LL algorithm will
have performed m2k −m3/3 flops at that point while, for the RL algorithm, the flop count raises
to that of the LL algorithm plus 2(n− k)(mk− k2/2). The appealing consequence of using the LL
algorithm is that it enables the use of larger block sizes for the following updates in the LL variant.

From an implementation point of view, the synchronization between the two teams of threads
is easy to handle. For example, at the beginning of each iteration of the outer LU, a boolean flag
is reset to indicate that the remainder update is incomplete. The thread team RU then sets this
value as soon as this task is complete. In the mean time, the flag is queried by the thread team
PF, at the end of every iteration of the inner LU, aborting its execution when a change is detected.
With this operation mode, there is no need to protect the flag from race conditions. This solution
also provides an adaptive (automatic) configuration of the block size as, if chosen too large, it will
be adjusted for the current (and, possibly, subsequent) iterations by the early termination of the
inner LU. The process is illustrated in Figure 4.14.

Figure 4.15 shows the effect of integrating the ET mechanism into the same configuration that
produced the results in Figure 4.9. A comparison between both figures shows that, with the ET,
as soon as the RU team is done with the update, this situation is notified to the PF team and the
execution of the panel factorization is aborted in order to make all the existing threads move on
to the next iteration of the factorization. Note that the time scale is different in both figures, and
that the first gemm performed by the TPF team looks much larger now; in fact, the duration of this
gemm is exactly the same as before (bo is still 256 in the first iteration) and the three remaining
gemm are much shorter due to the automatic adaption of the algorithmic block size performed by
the ET mechanism.

4.3.3.3 Relation to adaptive look-ahead via a runtime

Compared with our approach, which only applies look-ahead at one level, a TP execution
that relies on a run-time for adaptive-depth look-ahead exposes a higher degree of parallelism from
“future iterations”, which can amortize the cost of the panel factorization over a considerably larger
number of flops. This can be beneficial for architectures with a large number of cores, but can be
partially compensated by increasing the number of threads dedicated to the panel factorization,
combined with a careful fine-grain exploitation of the concurrency [20], in our approach. On the
other hand, adaptive-depth look-ahead via a runtime suffers from re-packing and data movement
overheads due to multiple calls to gemm. Moreover, it couples the algorithmic block size that
fixes the granularity of the tasks to that of the suboperands in gemm. Finally, the runtime-based
solutions rarely exploit nested TP+BDP parallelism and, even if they do so, taking advantage of a
MTL BLAS from within them may be difficult.

4.3.4 Experimental Evaluation

In this section we analyze in detail the performance behavior of several multi-threaded imple-
mentations of the algorithms for the LU factorization:
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Iter. k

LL1
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LL4

LL1
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Skipped

Alert ET

..

.

PF3

Figure 4.14: Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead and
ET. The execution is performed by teams TPF and TRU, consisting of tpf = 3 and
tru = 8 threads, respectively. In this example, team TRU completes the update RU2
while team TPF is executing an iteration of the panel factorization PF3. TRU then
notifies of this event to TPF, which then skips the remaining iterations of the loop
that processes the panel.

• LU: Blocked RL (Figure 4.3). This code only exploits BDP, via calls to the (non-malleable)
multi-threaded BLIS (version 0.1.8).

• Variants enhanced with look-ahead (Figure 4.6). The following three implementations take
advantage of nested TP+BDP, with n threads to the operations on the panel (team PF) and
t− n to the remainder updates (team RU).

– LU LA (subsection 4.3.2): Blocked RL with look-ahead.

– LU MB (subsection 4.3.3.1): Blocked RL with look-ahead and malleable BLIS.

– LU ET (subsection 4.3.3.2): Blocked RL with look-ahead, malleable BLIS, and early
termination of the panel factorization.

• LU OS: Blocked RL with adaptive look-ahead extracted via the OmpSs runtime (version
16.06). LU OS decomposes the factorization into a large collection of tasks connected via
data dependencies, and then exploits TP only, via calls to a sequential instance of BLIS.
In more detail, the OmpSs parallel version divides the matrix into a collection of panels of
fixed width bo. All operations performed during an iteration of the algorithm on the same
panel (row permutation, triangular system solve, matrix multiplication and, possibly, panel
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4.3. LOOK-AHEAD IN THE LU FACTORIZATION

Figure 4.15: Execution trace of the first four iterations of the blocked RL LU factorization with
partial pivoting, enhanced with look-ahead and early termination, using 6 threads,
applied to a square matrix of order 2,000, with initial bo = 256 and bi = 32.

factorization) are then part of the same task. This implementation includes priorities to
advance the schedule of tasks involving panel factorizations.

All codes include standard partial pivoting and compute the same factorization. Also, all solutions
perform the panel factorization via the blocked RL algorithm, except for LU ET and LU OS, which
employ the blocked LL variant. The performance differences between the LL and RL variants, when
applied solely to the panel factorization, were small. Nonetheless, for LU ET, employing the LL
variant improves the ET mechanism and unleashes a faster execution of the global factorization. For
LU OS we integrated the LL variant as well to favor a fair comparison between this implementation
and our LU ET. The block size is fixed to bo during the complete iteration in all cases, except for
LU ET which initially employs bo, but then adjusts this value during the factorization as consequence
of the ET mechanism.

In the experiments, we considered the factorization of square matrices, with random entries
uniformly distributed in (0,1), and dimension n = 500 to 12,000 in steps of 500. The block size for
the outer LU was tested for values bo = 32 to 512 in steps of 32. The block size for the inner LU
was evaluated for bi = 16 and 32. We employed one thread per core (i.e., t = 6) in all executions.
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4.3.4.1 Optimal block size

The performance of the blocked LU algorithms is strongly influenced by the outer block size bo.
As discussed in subsection 4.3.1, this parameter should balance two criteria:

• Deliver high performance for the gemm kernel. Concretely, in the algorithms in Figures 4.3
and 4.6, a value of bo that is too small turns A21 and A12/A

R
12 into narrow column and row

panels respectively, transforming the matrix multiplication involving these blocks (RL3 in
Figure 4.3 and RU2 in Figure 4.6) into a memory-bound kernel that will generally deliver low
performance. Note that, for gemm m ≈ n� k and k = bo.

• Reduce the amount of operations performed in the panel factorization (about n2bo/2 flops,
provided n� bo), in order to avoid the negative impact of this sequential stage.

Figure 4.16 sheds further light on the roles played by these two factors. The plot in the left-hand
side reports the performance of gemm, in terms of GFLOPS, showing that the implementation
of this kernel in BLIS achieves an asymptotic performance peak for k(= bo) around 144. (The
performance drop observed for k slightly above 256 is due to the optimal value of kc being equal to
that number in this architecture, as discussed in Chapter 3.) The right-hand side plot reports the
ratio of flops performed in the panel factorizations with respect to those of the LU factorization.
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Figure 4.16: GFLOPS attained with gemm (left) and ratio of flops performed in the panel factor-
izations normalized to the total cost (right).

The combined effect of these criteria seems to point in the direction of choosing the smallest
bo that attains the asymptotic GFLOPS rate for gemm. However, Figure 4.17 illustrates the
experimental optimal block size bo for the distinct LU factorization algorithms, exposing that this
is not the case. We next discuss the behavior for LU, LU LA and LU MB, which show different
trends. (LU ET and LU OS will be analyzed latter.) In particular, LU benefits from the use of
larger values of bo than the other two codes for all problem dimensions. The reason is that a large
block size operates on wide panels, which turns their factorization into a BLAS-3 operation with a
mild degree of parallelism, and reduces the impact of this computation on the critical path of the
factorization. LU LA exhibits a similar behavior for large problems, but favors smaller block sizes
for small to moderate problems. The reason is that, for LU LA, it is important to balance the panel
factorization (TPF) and remainder update (TRU) so that their execution approximately requires the
same time.

Compared with the previous two implementations, LU MB promotes the use of small block
sizes, up to bo = 192, for the largest problems. (Interestingly, this corresponds to the optimal
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value of k for gemm.) One reason for this behavior is that, when the malleable version of BLIS is
integrated into LU MB, the practical costs of the two branches/tasks do not need to be balanced.
Let us elaborate this case further, by considering the effect of reducing the block size, for example,
from bo to b′o = bo/2. For simplicity, in the following discussion we will use approximations for the
block dimensions and their costs; furthermore, we will assume that n � bo. The first and most
straight-forward consequence of halving the block size is that the number of iterations is doubled.
Inside each iteration with the original block size bo, the loop body invokes, among others kernels, a
gemm of dimensions m× (m− bo)× bo (with m the number of rows in the trailing submatrix AR22),
for a cost of 2m2bo flops; in parallel, the factorization involves a panel of dimension m × bo, for a
cost of mb2o − b3o/3 ≈ mb2o flops. When the block size is halved to b′o, the same work is basically
computed in two consecutive iterations. However, this reduces the amount of flops performed in
terms of panel factorizations to about 2m(b′o)

2 = mb2o/2 while it has a minor impact on the number
of flops that are cast as gemm (two of these products, at a cost of 2m2b′o = 2m2bo/2 flops each).
The conclusion is that, by reducing the block size, we decrease the time that the single thread
spends in the panel factorization TPF, favoring its rapid merge with the thread team that performs
the remainder update TRU. Thus, in case the execution time of the LU is dominated by TRU, adding
one more thread to perform this task (in this scenario, in the critical path) as soon as possible will
reduce the global execution time of the algorithm.
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Figure 4.17: Optimal block size of the blocked RL algorithms for the LU factorization.

4.3.4.2 Performance comparison of the variants with static look-ahead

The previous analysis on the effect of the block size exposes that choosing the optimal block
size is a difficult task. Either we need a model that can accurately predict the performance of each
building block appearing in the LU factorization, or we perform an extensive experimental analysis
to select the best value. The problem is even more complex if we consider that, in practice, an
optimal selection would have to vary the block size as the factorization progresses. Concretely, for
the factorization of a square matrix of order n via a blocked algorithm, note that the problem is
decomposed into multiple subproblems that involve the factorization of matrices of orders n − bo,
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n−2 ·bo, n−3 ·bo, etc. From Figure 4.17, it is clear that the optimal value of bo will be different for
several of these subproblems. In the end, the value that we show in Figure 4.17 for each problem has
to be considered as a compromise that attains fair performance for a wide range of the subproblems
appearing in that case.
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Figure 4.18: Performance comparison of the blocked RL algorithms for the LU factorization (ex-
cept LU OS) with a fixed block size bo = 256.

Figure 4.18 reports the GFLOPS rates attained by the distinct implementations to compute the
plain LU factorization and the variants equipped with static look-ahead (i.e., all except LU OS),
using bo = 256 as a compromise value for all of them. Although this value is optimal for only
a few cases, the purpose of this experiment is to show the improvements attained by gradually
introducing the techniques enhancing look-ahead. The figure reveals some relevant trends:

• Except for the smallest problems, integrating the look-ahead techniques clearly improves the
performance of the plain LU factorization implemented in LU.

• The version with malleable BLAS (LU MB) improves the performance of the basic version
of look-ahead (LU LA) for the larger problems. This is a consequence of the cost of the
panel factorization relative to that of the global factorization. Concretely, for fixed bo, as the
problem size grows, the global flop-cost varies cubically in n, as 2n3/3, while the flop-cost of
the panel factorizations grows quadratically, with n2bo/2. Thus, we can expect that, for large
n, the remainder update TRU becomes more expensive than the panel factorization TPF. This
represents the actual scenario that was targeted by the variant with malleable BLIS.

• The version that combines the malleable BLAS with ET (LU ET) delivers the same perfor-
mance of LU MB for large problems, but outperforms all other variants with static look-ahead
for the smaller problems. Again, this could be expected by considering the relative cost of
the panel factorization for small n.
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4.3.4.3 Performance comparison with OmpSs

We next extend the experimental analysis by providing a comparison of the best variant with
static look-ahead, LU ET, with the implementation that extracts parallelism via the OmpSs run-
time, LU OS. In this experiment we depart from the previous case, performing an extensive eval-
uation in order to report the performance for the optimal block size for each problem dimension
and algorithm. The actual optimal values employed in the experiment are those extracted from
Figure 4.17. For LU OS, we select a value for bo that is then fixed for the complete factorization.
As this variant overlaps the execution of tasks from different iterations in time, it is difficult to
vary the block size as the factorization progresses. For LU ET, the selected value of bo only applies
to the first iteration. After that, the ET mechanism automatically adjusts this value during the
factorization process.

Figure 4.19 shows the results for this comparison in the lines labelled as “(b opt)”. LU ET is
very competitive, clearly outperforming the runtime-based solution for most problems and offering
competitive performance for the largest four.

Manually tuning the block size to each problem dimension is in general impractical. For this
reason, the figure also shows the performance curves when the block size is fixed to bo = 192
for LU ET and bo = 256 for LU OS. These values were selected because they offered high perfor-
mance for a wide range of problem dimensions, especially, the largest ones, as reported in Fig-
ure 4.17. Interestingly, the performance lines corresponding to this configuration, labelled with
“(b=192)”/“(b=256)”, show that choosing a suboptimal value for bo has a minor impact on the
performance of our solution LU ET, because the ET mechanism adjust this value on-the-fly (for
the smaller problem sizes). Compared with this, the negative effect of a suboptimal selection on
LU OS is clearly more visible. This effect is observed for small problem dimensions where the gap
between the lines for the optimal block size and the fixed block size is larger.
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Figure 4.19: Performance comparison between the OmpSs implementation and the blocked RL
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configurations are chosen for each algorithm: optimal block size for each problem
size; and fixed block sizes bo = 192 for LU ET and bo = 256 for LU OS.
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A comparison with other parallel versions of the LU factorization with partial pivoting is pos-
sible, but we do not expect substantial changes in our results. In particular, Intel MKL includes
a highly-tuned routine for this factorization that relies in their own implementation of the BLAS
and some type of look-ahead. Therefore, whether the advantages of one implementation over the
other come simply from the use of a different version of the BLAS, or from the positive effects of
our WS and ET mechanism, will be really difficult to infer. The PLASMA library [5] also provides
a routine for the LU factorization with partial pivoting supported by a runtime that implements
dynamic look-ahead. The techniques integrated in PLASMA’s routine are not different from those
in the OmpSs implementation evaluated in this work. Therefore, when linked with BLIS, we do
not expect a different behavior between PLASMA’s routine and LU OS.

4.3.4.4 Multi-socket performance comparison with OmpSs

We conclude the experimental analysis by including a multi-socket experiment that compares
different configurations of the best variant with static look-ahead, LU ET, with the runtime ap-
proach via OmpSs, LU OS.

In this last experiment we consider the two sockets present in the platform, using 12 threads
in our tests, and report, as in the previous section, the performance for the optimal block size for
each problem dimension and algorithm. The optimal values employed in this case are displayed in
Figure 4.20.
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Figure 4.21 shows the results for this comparison in the lines labelled as “(b opt)”. LU ET is
very competitive, clearly outperforming the runtime-based solution for most problems and offering
competitive performance for the largest five, except for the case that maps one thread in TPF and
the rest of resources in TRU.

As in the case where only one socket is employed, the performance curves are obtained for a
fixed block size and the optimal block size for each problem dimension. The block size is fixed to
bo = 256 for all cases except for LU ET when mapping one thread to TPF and eleven to TRU. For
LU ET, according to Figure 4.20, the value that offers high performance for a wide range of problem
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dimensions is bo = 224. As in the previous study where only one socket was considered, the perfor-
mance lines corresponding to the fixed block size configuration, labelled with “(b=256)”/“(b=224)”,
show how the ET mechanism is less affected by the use of a suboptimal block size value. Note that
for the case where only one thread is in charge of TPF, the difference between the optimal block
size and the fixed block size is larger than in the other cases. This behavior is due to the reduced
number of threads in charge of TPF which makes the first iteration of the factorization costly. Con-
sequently, adjusting the block size for the next iterations is not enough to overcome the effects of
the suboptimal initial block size election.

In addition, the impact of different thread mapping is shown in Figure 4.21. While in the
previous section using one thread in the TPF and the rest in the TRU was enough, here we observe
the benefits of adding more threads to TPF. Since more resources are available (2 socket vs. 1
sockets), increasing the number of threads in TPF makes this task finish earlier and, consequently,
all the threads can join faster to the execution of TRU. Interestingly, when all cores are in use,
employing only one thread in TPF harms performance, since the time spent in the execution of TPF

is increased (if compared to the other cases) and we are missing resources in TRU for longer time.
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Figure 4.21: Performance comparison between the OmpSs implementation and the blocked RL
algorithm for the LU factorization with look-ahead, malleable BLIS and ET. Two
configurations are chosen for each algorithm: optimal block size for each problem
size; and fixed block size bo = 256 for all cases, except for LU ET when mapping one
thread to TPF and eleven to TRU.

Again, a comparison with other parallel versions of the LU factorization is possible but sub-
stantial changes in our results are not expected for the same reason stated in the previous section.

4.4 Malleable LU on big.LITTLE

Following the static parallelization schemes described in Section 4.3.3 for the MTL BLAS for
the Intel Xeon E5-2603 v3, in this section, we adapt and evaluate them when the target system
is an AMP. Given that there exist a dynamic alternative in order to apply look-ahead (via a
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runtime), we review different implementations for both cases and study their performance results.
We start this section with the analysis of the static look-ahead implementations enhanced with
malleability and early termination, where the operations that constitute the main building blocks
are thoroughly examined; then the performance results are analyzed and compared with dynamic
look-ahead versions that rely on a runtime. All the experiments in this section were performed
employing ieee double precision arithmetic and the chip frequency was set to 1.3 GHz for both
Cortex-A15 and Cortex-A7 cores. Furthermore, all variants of the LU include standard partial
pivoting and compute the same factorization. They also compute the factorization of the panel
(kernels RL1 and PF3) via the blocked RL algorithm, except for the variants with static look-ahead,
which integrate the blocked LL algorithm due to the application of ET. In the experiments we
considered square matrices of dimension n = 500 to 8,000 in steps of 500, with random entries
uniformly distributed in the interval (0, 1). The algorithmic block size was tested for values b = 32
to 512 in steps of 32; the inner block size for the factorization of the panel was bi = 32. The value
bi = 16 was discarded because, as a part of an independent experiment, it was checked that using
bi = 16 resulted in no differences on performance when compared with bi = 32.

4.4.1 Mapping of threads for the variant with static look-ahead

A first step to migrate the parallel version of LU with static look-ahead presented in Sec-
tion 4.3.3 to an AMP can simply replace the calls to trsm and gemm with their asymmetry-aware
counterparts. However, the strategy to map the cores of the Exynos 5422 to the tasks now offers a
richer collection of possibilities as, in addition to the number of threads that are assigned to each
task, we also need to decide the type of cores.

We note that all the configurations explored in this section are enhanced with WS, ET and
MTL so that the team in charge of TPF becomes involved in the execution of TRU once the former
task is completed and the TPF thread team stops its execution if the TRU team happens to finish
first.

4.4.1.1 Thread mapping of GEMM

In order to analyze the effect of thread mapping in the LU factorization, four different strategies
are tested in this section. In all cases, the number of threads computing the trsm (in both TPF

and TRU) is the number of big cores that are available in that task; if no big cores are assigned to a
task, all available LITTLE cores will perform the trsm. Regarding laswp, the whole set of (slow
+ fast) threads will perform it, except for the small pivoting interchanges included in TPF that are
single-threaded.

Each configuration is identified using a naming scheme of the form “GEMM(w+x|y+z)”, where
“w+x” are two numbers, in the range 0–4, used to specify the amount of Cortex-A7+Cortex-A15
cores (in that order) mapped to the execution of the gemm kernels appearing in TPF; and “y+z”,
in the same range, play the same role for those mapped to the execution of the gemm kernels
appearing in TRU. Specifically, the following configurations were tested in our experiments:

• GEMM(2+0|0+4): two Cortex-A7 cores execute TPF and four Cortex-A15 cores are mapped to
TRU. With this configuration, two Cortex-A7 cores remain idle.

• GEMM(4+0|0+4): the whole Cortex-A7 cluster executes TPF and the Cortex-A15 cluster is in
charge of TRU.

• GEMM(1+1|3+3): one Cortex-A7 core and one Cortex-A15 core are mapped to TPF while the
remaining cores (three Cortex-A7 cores plus three Cortex-A15 cores) are mapped to TRU.
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• GEMM(0+1|4+3): only one Cortex-A15 core is mapped to TPF; the remaining cores (four
Cortex-A7 cores plus three Cortex-A15 cores) execute TRU.

For the first two parallel configurations, GEMM(2+0|0+4) and GEMM(4+0|0+4), at the beginning
of each iteration, the execution employs symmetric kernels since TPF is mapped to (either two
or four) Cortex-A7 cores only, while TRU is executed by the four Cortex-A15 cores only. Now,
when TPF is completed, the active Cortex-A7 cores become part of the team in charge of TRU,
and the execution relies on asymmetric kernels from that point. With these tests we aim to
verify that the optimal number of threads mapped to TPF depends on the problem size due to
the low parallelism of this task. Figure 4.22 shows that, for the smaller problems (n < 3,500),
higher performance is attained by the configuration that uses two Cortex-A7 cores only, but this
situation is reversed for the larger problem dimensions, for which the exploitation of the four
Cortex-A7 delivers higher GFLOPS rates. The reason is that the kernels appearing in TPF involve
operands of small dimension, so that increasing the number of threads devoted to this task does not
necessarily improve the performance of the global algorithm. Furthermore, when the Cortex-A7
cores are moved to TRU, the asymmetric kernels require large problem dimensions to reach its peak
performance (see [28] for details).
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Figure 4.22: Performance of the conventional parallelization of the blocked RL algorithm with
static look-ahead enhanced with MTL and WS/ET for different gemm configurations.

The last two “task-hybrid” configurations differ from the previous configurations in the com-
bination of a few Cortex-A7 and Cortex-A15 in at least one of the gemm operations. In the first
case, GEMM(1+1|3+3), the same number of big and LITTLE cores are used in each task, using less
resources in TPF. As shown in Figure 4.22, combining two different kind of cores in both tasks in-
creases the performance of the LU factorization by up to 40%. On the other hand, GEMM(0+1|4+3)

features an uneven number of cores in the gemm kernel. While in the previous strategy the number
of Cortex-A7 and Cortex-A15 cores is the same when computing a gemm, here only one Cortex-
A15 is employed in TPF and the whole Cortex-A7 cluster plus three Cortex-A15 cores are used.
This mapping favors the execution of TRU because more cores execute it since the beginning and, as
pointed out in Section 3.3, the number of threads in execution has a great impact in the performance
of gemm.
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4.4.1.2 Configuration of TRSM

From the analysis of the best thread mapping for gemm (GEMM(0+1|4+3)) found in the previous
section, now we explore three different configurations for trsm. The main difference among these
three cases is the strategy applied to parallelize the trsm kernel:

• TRSM(L1L4;0+1|4+3): the asymmetric distribution of the workload between clusters takes
place in Loop 1; then, in Loop 4, each core is assigned an even part of the workload according
to the cluster it belongs to.

• TRSM(L4;0+1|4+3): the asymmetric distribution between the clusters is performed only at one
level in Loop 4.

• TRSM(L4;0+1|0+3): leverages an asymmetry-oblivious implementation of trsm that takes
advantage of the Cortex-A15 cores only, yielding slightly higher performance for large matrices
(n > 6,000).

Figure 4.23 reports the results for the different configurations of trsm. Clearly, the worst
option is to leverage an asymmetric distribution only in Loop 4. Curiously, although this reduces
the number of buffers for Ac and Bc and diminishes the volume of cache misses, it offers lower
performance. This behavior can be explained by the implementation of this configuration. Given
that an asymmetric distribution of the workload is required at this level, a dynamic mechanism
is needed in order to implement it. However, the overhead introduced by the dynamic scheduling
precludes an increase of performance by exploiting the asymmetry of the platform, mainly due to
the small workload that trsm represents in the factorization (note, that for large matrix sizes, this
trend changes). On the other hand, if trsm is configured to apply the dynamic distribution at a
higher level (Loop 1), the overhead of this mechanism is significantly reduced and the performance
improves considerably. Finally, we check the impact of employing only the Cortex-A15 cores to
compute trsm. In view of the results, this is the best choice in order to optimize performance,
since adding Cortex-A7 cores decreases the performance rate due to the low workload of trsm; in
the best situation trsm operates on a triangular matrix of dimension 256×256 making the addition
of extra resources worthless.
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Figure 4.23: Performance of the conventional parallelization of the blocked RL algorithm with
static look-ahead enhanced with MTL and WS/ET for different trsm configurations.
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4.4.1.3 The relevance of the partial pivoting

So far, the analysis of the laswp routine was not considered because trsm and gemm are the
most costly building blocks of the LU factorization with partial pivoting. However, the reorgani-
zation of the code in order to apply look-ahead precludes the overlap of all the row permutations
in TPF with the TRU tasks due to data dependencies. For this reason, a deeper analysis on the
impact of the parallelization of this operation is performed. To this end, we adopt the best con-
figurations found in the previous sections (GEMM(0+1|4+3)) and (TRSM(L4; 0+1|0+3)), that is the
one that employs the Cortex-A15 cluster when performing trsm and a combination of Cortex-A7
and Cortex-A15 cores for gemm (note that in the TPF task only one thread is used, but seven are
available for TRU).
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Figure 4.24: Performance of the conventional parallelization of the blocked RL algorithm with dif-
ferent laswp parallelizations and static look-ahead enhanced with MTL and WS/ET.

In Figure 4.24 (left) we report the performance when changing the parallelization degree and
the mapping of the threads that execute the pivoting. These results are presented for different
combinations of Cortex-A15 and Cortex-A7 cores. In view of them, we can conclude that, for small
matrices, those parallelizations that only use Cortex-A15 cores in general provide better results.
This is not surprising since the workload is too small to take advantage of the Cortex-A7 cores.
On the other hand, for large size matrices it is hard to determine if there is any difference in
performance. When zooming in the results (right-hand side plot in Figure 4.24) although we
appreciate that adding one or more Cortex-A7 cores reduces performance. Therefore, we conclude
that, in order to attain high performance, the best option when parallalizing laswp should employ
two Cortex-A15 cores, yielding an improvement that is on average around 7.7%.

4.4.2 Dynamic look-ahead with OmpSs

There are different approaches that rely on a runtime in order to introduce a dynamic look-
ahead in the implementation of the LU factorization. Concretely, in a conventional runtime-based
approach with task priorities (i.e., OmpSs), a dynamic look-ahead is orchestrated by the runtime
which is in charge of parallelizing the algorithm. A second option is the use of an asymmetry-aware
BLAS library in combination with a traditional runtime [36]. This choice exposes the AMP as a
conventional symmetric multi-core processor to the OmpSs runtime, hiding the asymmetry inside
4 symmetric virtual cores (VCs), composed each of a single Cortex-A15 core plus a single Cortex-A7
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core. An alternative that we also explored relies on an asymmetry-aware version of OmpSs called
Botlev [35].

Figure 4.25 illustrates the performance of the runtime-based parallel configurations of LU de-
scribed in the previous paragraph:

• LU OS VC: OmpSs parallelization of the basic algorithm with asymmetry-oblivious version
of the runtime, linked with the asymmetry-aware implementation of trsm and gemm, and
executed using all cores of the Exynos 5422 SoC grouped into 4 VCs.

• LU OS BO: OmpSs parallelization of the basic algorithm, parallelized using the Botlev asymmetry-
aware version of the runtime, linked with the sequential implementation of trsm and gemm,
and executed using all cores of the Exynos 5422 SoC.

• LU OS: OmpSs parallelization of the basic algorithm with an asymmetry-oblivious runtime,
linked with the sequential implementation of trsm and gemm, and executed using all cores
of the Exynos 5422 SoC.

As expected, this experiment reveals that considerably lower performance rates are obtained
when no attempt is made to take into account the asymmetry of the architecture. This corresponds
to the configuration LU OS, which combines an asymmetry-oblivious OmpSs scheduler with imple-
mentations of the gemm and trsm kernels that are not aware of the asymmetry. In contrast, the
highest performance rates are observed for the configuration that views the Exynos 5422 SoC as
4 VCs, using asymmetry-aware versions of the gemm and trsm kernels, but an asymmetry-oblivious
scheduler. The opposite solution, combining an asymmetry-aware scheduler with asymmetry-
unconscious kernels, delivers a GFLOPS rate that is in between the other two. These results
agree with the observations made for the Cholesky factorization in [36].
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Figure 4.25: Performance of the OmpSs parallelization of the blocked RL algorithm for LU (dy-
namic look-ahead).

4.4.3 Global comparison

Figure 4.26 compares the best parallel configuration for each of the versions of the LU factor-
ization evaluated in this section:

• LU AS: blocked RL algorithm for LU (without look-ahead) linked with asymmetric-aware
implementation of the basic building blocks gemm and trsm that employs all 8 cores of the
ARM SoC to extract parallelism from within each BLAS kernel.
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• LU LA: LU with look-ahead with the optimal configurations of the basic kernels determined in
subsection 4.4.1.1: GEMM(0+1|4+3), TRSM(L4;0+1|0+3), and two Cortex-A15 for the execution
of laswp.

• LU OS VC: OmpSs parallelization of the basic algorithm with asymmetry-oblivious version
of the runtime, linked with the asymmetry-aware implementation of trsm and gemm, and
executed using all cores of the Exynos 5422 SoC grouped into 4 VCs.

In this plot it can observed that the conventional parallelization delivers a reduced performance
rate due to the bottleneck imposed by the panel factorization. This hurdle can be greatly palli-
ated through the introduction of static look-ahead, enhanced with MTL and WS/ET, yielding an
implementation that consistently delivers up to 2 GFLOPS more than the conventional algorithm
for LU. Finally, the runtime-based implementation, which applies a dymamic look-ahead strategy,
proves that the deeper look-ahead is especially beneficial for small problems (n < 2,000). For
mid-large problem dimensions though, our implementation matches or slightly outperforms the
runtime-based approach.
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Figure 4.26: Performance of the best parallel configuration for each variant: conventional blocked
RL algorithm, static look-ahead version enhanced with MTL and WS/ET, and
runtime-based implementation.

4.5 Summary

In this chapter, we have migrated a legacy implementation of LAPACK that leverages the
asymmetry-aware BLIS-3 to run on the target AMP. In doing so, we have explored the benefits and
drawbacks of conducting a simple (plain) migration which does not perform any major optimiza-
tions in LAPACK. Our experimentation with two major factorization from LAPACK illustrates
two distinct scenarios (cases), ranging from a compute-bound operation/routine (Cholesky factor-
ization) where high performance/energy efficiency are easily attained from this plain migration;
to a compute-bound operation (LU factorization) where the same level of success will require a
significant reorganization of the code that introduces an advanced scheduling mechanism.

To tackle the low performance attained by the LU factorization, we have introduced WS and ET
as two novel techniques to avoid workload imbalance during the execution of matrix factorizations,
enhanced with look-ahead, for the solution of linear systems. The WS mechanism especially benefits
from the design of a MTL instance of BLIS, which allows the thread team in charge of the panel
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factorization, upon completion of this task, to be reallocated to the execution of the trailing update.
The ET mechanism tackles the opposite situation, with a panel factorization that is costlier than
the trailing update. In such scenario, the team that performed the update communicates to the
second team that it should terminate the panel factorization, advancing the factorization process
into the next iteration.

Our results on an Intel Xeon E5-2603 v3 showed the performance benefits of our version en-
hanced with WS+ET and malleable BLIS compared with a plain LU factorization as well as a
version with look-ahead. The experiments also reported competitive performance compared with
an LU factorization that is parallelized by means of a sophisticated runtime, such as OmpSs, that
introduces look-ahead of dynamic (variable) depth. Compared with the OmpSs solution, our ap-
proach offers higher performance for most problem dimensions, seamlessly tunes the algorithmic
block size, and features a considerably smaller memory footprint as it does not require a sophisti-
cated runtime support.

Finally, we applied our WS+ET solution to the LU factorization on an Exynos 5422 SoC
equipped with an ARM Cortex-A7/Cortex-A15 multi-core processor in order to analyze the po-
tential benefits, already observed for the Intel Xeon platform, that can be obtained on an AMP.
In this case, we compared our strategy that applies a static look-ahead with the runtime-based
approach (via OmpSs) that integrates a dynamic look-ahead. The experimental results show that
the use of a thread-level malleable library, combined with the WS+ET strategies, outperforms the
runtime-based implementation for small and medium matrices and matches the performance for
large problem dimensions. The reason for this behavior lies in that, compared with the classical
blocked algorithm, the static look-ahead partially removes the scalability bottleneck imposed by
the panel factorization. In addition, compared with the runtime solution, the static look-ahead
produces a more cache-friendly execution.

To conclude, this work does not intend to propose an alternative to runtime-based solutions.
Instead, the message implicitly carried in these experiments aims to emphasize the benefits of
malleable thread-level libraries, which we expect to be crucial in order to exploit the massive
thread parallelism of future architectures. This work opens a plethora of interesting questions for
future research. In particular, how to generalize the ideas to a multi-task scenario, what kind of
interfaces may ease thread-level malleability, and which kind of support is necessary in the runtime
for this purpose.
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Reduction to Condensed Forms

In this chapter we extend the study of LAPACK routines in combination with the asymmetry-
aware implementation of BLIS in order to complete the study about the performance benefits when
targeting an AMP. To this end, we analyze three routines that perform two-sided orthogonal reduc-
tions (TSOR) of a dense matrix to a condensed form. Efficient and numerically reliable algorithms
for the computation of the eigenvalues/singular values of a dense matrix consist of two stages [56];
first, the matrix is transformed to a condensed matrix through a TSOR and then a specific solver
is applied to the condensed matrix in order to accurately compute the eigenvalues/singular values.

We study the three main routines provided by LAPACK [11] for TSOR to distinct condensed
forms:

• sytrd [75] reduces a symmetric matrix to tridiagonal form via similarity (i.e., eigenvalue-
preserving) transformations;

• gebrd [55] transforms a general matrix to bidiagonal form; and
• gehrd [76] reduces a general matrix to Hessenberg form via similarity transformations.

The first and third routines are applied as an initial stage to compute the eigenvalues of a square
matrix, while the second routine is the first step for the computation of the singular values of a
non-necessarily square matrix.

In the following sections, we first describe the operations for the TSOR. Next, we present several
optimizations to these procedures specifically designed for an ARM big.LITTLE AMP. Then, we
present a detailed experimental analysis to illustrate the performance benefits of our architecture-
and asymmetry-aware variants of sytrd, gebrd and gehrd on the big.LITTLE architecture.
Finally, we propose a performance model that guides the selection of the optimal algorithmic block
size and core configuration for the TSOR stage.

5.1 General Structure of the Reduction to Condensed Forms

Given a square matrix A, of order n, the associated eigenvalue problem is formally defined by

AX = XΛ, (5.1)
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where the n × n diagonal matrix Λ = diag(λ1,λ2, . . . ,λn) contains the eigenvalues of A, and the
columns of the n × n matrix X contain the corresponding eigenvectors [56]. On the other hand,
the singular value decomposition (SVD) of an m× n matrix A is defined as

A = UΣV T , (5.2)

where Σ = diag(σ1,σ2, . . . ,σr) is a square matrix of order r = min(m,n) that contains the singular
values of A in decreasing order of magnitude (i.e., σi ≥ σi+1); and U,V T , of respective dimensions
m× r and r × n, are orthogonal and their columns comprise the left and right singular vectors of
the matrix.

The routines in LAPACK for the solution of (symmetric and general) eigenproblems as well as
the computation of the singular values tackle dense instances of these problems by first reducing A
to a condensed matrix C, of dimension m× n (with m = n for eigenproblems), via a collection of
Householder (orthogonal) reflectors [56]. For performance reasons, at each iteration of these TSOR
procedures (usually known as blocked algorithms), several orthogonal reflectors are aggregated into
a single block reflector, which is then applied via calls to efficient Level-3 BLAS. It is important
to note that there exists a multi-stage approach that performs the TSOR in two or more steps, by
first reducing A to a band matrix and then successively refining this to the sought-after condensed
form [19]. Nevertheless, this alternative approach will not be considered as it often requires a higher
number of flops. We next describe the processes in some detail.

Let us denote the algorithmic block size as b and, for simplicity, assume hereafter that m,n are
both integer multiples of b. Consider that we have progressed up to an iteration j ∈ {1,2, . . . ,min(m,n)/b},
applying the necessary transformations (from the left and right) to the matrix in order to obtain:

A →

 C00 C01 C02

C10 A11 A12

0 A21 A22

 ,

where C00 is (j − 1)b× (j − 1)b; A11 is b× b; and the blocks C00, C10, C01 (and C02), contain the
corresponding entries of the sought-after condensed form C. The following operations are then
computed during the current iteration of the TSOR routines sytrd, gehrd and gebrd:

1. Panel Factorization (PF): The “current” column-panel

(
A11

A21

)
and row-panel (A11 | A12)

are reduced to the target condensed form using a sequence of orthogonal transformations. Si-
multaneously, these transformations are aggregated in the form of matrices V , X, both of
dimension m− jb× b, and U , Y , both of size n− jb× b, such that the application of these
transformations yields  C00 C01 C02

C10 C11 C12

0 C21 A22 − V Y T −XUT

 ,

implying that, upon completion of this operation, the computation of the condensed form has
progressed by b columns/rows.

2. Trailing Update (TU): The submatrix A22 is updated as A22 := A22 − V Y T −XUT .

This generic TSOR procedure implements a blocked algorithm that processes the m×n matrix
A, from top-left to bottom-right, in blocks of b-column/row panels starting at columns/rows ̂ =
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(j−1)b = 0, b, 2b, . . .. The bulk of the computation in PF corresponds to the formation of matrices
X, Y (U , V are obtained as part of the panel factorization). In particular, for each reduced column
in the panel, this may require several matrix-vector multiplications.

This generic TSOR procedure requires some specialization depending on the type of condensed
form to be computed:

• For sytrd, m = n, A is symmetric, X = Y , U = V and, in order to exploit the symmetry,
only the lower (or upper) half of A22 is updated in TU. Note that only in this reduction
C02=0, given that A is symmetric.

• The reduction to bidiagonal form via gebrd can be re-organized to reduce the computational
cost in case m� n (or vice-versa), but the previous procedure is the preferred choice if m ≈ n.

• The reduction to Hessenberg form via gehrd slightly differs from the generic TSOR procedure
in the specific blocks that are updated (and annihilated) at each iteration [86].

5.2 General Optimization of the TSOR Routines

There are four optimization keys that have to be addressed to ensure high performance for the
execution of the TSOR routines on the target AMP:

• Development of tuned micro-kernels for the Level-2 and Level-3 BLAS and each type of core.
• Asymmetry-aware parallelization of the Level-2 and Level-3 BLAS.
• Selection of the algorithmic block size for the TSOR procedure.
• Configuration of the number and type of cores to utilize for each type of Level-2 and Level-3

BLAS kernel invoked from the TSOR procedures.

The first two factors are tackled through the use of our asymmetry-aware implementation of
BLIS, presented in Chapter 3. Therefore, this chapter focuses on performing a general evaluation
of the impact of the last two factors on performance. The experiments in the following sections
were performed with the Cortex-A7 cores operating at 1.4 GHz and the Cortex-A15 at 1.5 GHz,
using real single-precision ieee arithmetic. In addition, all our experiments employ the sequential
Level-1 kernels from BLIS (version 0.1.8), in combination with the multi-threaded asymmetry-aware
instances of the Level-3 and Level-2 kernels. Cache and register configuration parameters are set
to the values reported in Tables 5.1 and 5.2, respectively.

mr nr mc kc nc

ARM Cortex-A15 4 4 400 368 4,096

ARM Cortex-A7 4 4 88 368 4,096

Table 5.1: Parameters for optimal performance of the Level-3 kernels in BLIS on the ARMv7
big.LITTLE embedded in the Exynos 5422 SoC using real single-precision ieee arith-
metic.

In general, the algorithmic block size b selected for the TSOR routines has an important per-
formance effect. This impact will be analyzed in detail for each TSOR routine included in this
chapter. In addition, a general analysis about the relevance of selecting the most appropriate core
configuration is presented in this section.
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nr mc nc

ARM Cortex-A15 4 832 2,560

ARM Cortex-A7 4 144 2,560

Table 5.2: Parameters for optimal performance of the Level-2 kernels in BLIS on the ARMv7
big.LITTLE embedded in the Exynos 5422 SoC using real single-precision ieee arith-
metic.

5.2.1 Selection of the core configuration

A complementary factor that dictates the performance of the TSOR procedures, when executed
on an AMP, is the number/type of cores (configuration) that are employed for the execution of
each building block. Here we consider the BLAS-2 kernels (gemv and symv) and BLAS-3 kernels
(gemm and syr2k) that appear in the TSOR procedures as building blocks. Although, the trmm
and trmv kernels are also found in some of the TSOR procedures tackled in this chapter, we
do not consider them due to the short time that is spent on them during the execution of the
reductions. In this section, we present the performance for each building block when using different
core configurations, namely 4 Cortex-A7 cores, 1 Cortex-A15 core, 1 Cortex-A15 core + 4 Cortex-
A7 cores (only for BLAS-2 routines) and 4 Cortex-A15 cores + 4 Cortex-A7 cores (only for BLAS-3
routines). In addition, we perform our tests for two different block sizes in order to analyze the
effect of this parameter.

The two plots in the top row of Figure 5.1 report the performance rate attained by gemv, using
matrix operands of two practical shapes encountered in the TSOR routines. These two graphs
reveal that the threshold dimension from which it is more convenient to use a Cortex-A15 core
plus the full Cortex-A7 cluster depends on the iteration step (m-dimension) and the algorithmic
block size (n-dimension). For small block sizes, large values in the m-dimension favor the use of
the Cortex-A15 core plus the full Cortex-A7 cluster. In contrast, for large block sizes, small values
in the m-dimension are to be preferred. In addition, the block size dictates the highest sustainable
performance observed for gemv. For small block sizes, this kernel attains 2.5 GFLOPS due to data
re-use in the caches, but this value decreases to only 2 GFLOPS for large block sizes.

The four plots in the bottom two rows of Figure 5.1 show the results for an analogous experiment
using the Level-3 BLAS routines and two matrix shapes that appear during the TSOR routines.
The conclusions inferred from this analysis of the Level-3 BLAS are similar to those presented
for gemv. In summary, the point from which it is more beneficial to use the entire SoC or the
Cortex-A15 cluster only depends on the iteration step and the block size. However, for the Level-3
BLAS, large block sizes tend to render higher performance, as they allow to select closer-to-optimal
loop strides while extracting an ampler level of concurrency within the kernels.

To complete the analysis of the main building blocks present in the TSOR routines, Figure 5.2
shows the performance of the symv routine. In contrast with the previous kernels, an optimal
configuration of this building block always exploits a Cortex-A15 core plus the full Cortex-A7
cluster.

In summary, the algorithmic block size directly affects the shapes of the matrix operands passed
to the BLAS kernels invoked from the TSOR procedures. Furthermore, the experiments in this
section illustrate that the block size changes the threshold from which it is more beneficial to use
a certain configuration for the execution of a certain building block (kernel). Therefore, the effect
of the block size has to be analyzed simultaneously with the core configuration.
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Figure 5.1: Performance of Level-2 and Level-3 BLAS on the ARMv7 big.LITTLE embedded in
the Exynos 5422 SoC.

To close this section, we point out that employing a parallel configuration for the execution of
small-size matrix-vector products is counterproductive. To avoid this negative effect, we designed
an adaptive strategy that, according to problem dimension and block size, selects the best core
configuration at runtime. This strategy ensures that the performance of the asymmetry-aware con-
figuration matches that attained with the Cortex-A15 cluster for small- to medium-size problems.
Compared with that, for larger problems, our asymmetry-aware algorithms add the Cortex-A7
cluster to the computation, raising the GFLOPS rate by a factor that is close to 30%.
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Figure 5.2: Performance of Level-2 and Level-3 BLAS on the ARMv7 big.LITTLE embedded in
the Exynos 5422 SoC

5.3 Reduction to Tridiagonal Form (sytrd)

Given a dense matrix A ∈ Rn×n, its reduction to tridiagonal form T by an orthogonal similarity
transformation is given by T = QTAQ. Listing 5.1 displays a simplified C code that computes
this type of reduction for of an n×n matrix stored starting at address A with column leading
dimension Alda. For simplicity, hereafter we assume that the matrix size is an integer multiple
of the block size b. The code overwrites the corresponding entries of the original matrix with the
corresponding elements of the tridiagonal matrix T , leveraging the numerical kernels (or building
blocks) latrd, syr2k and sytd2 for this purpose. The latrd subroutine from LAPACK reduces
the first b rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an
orthogonal similarity transformation; the main BLAS-2 building blocks of this routine are gemv
and symv. Routine sytd2 implements an unblocked algorithm that reduces a symmetric matrix to
real symmetric tridiagonal form by orthogonal similarity transformations; it relies on the BLAS-2
symv kernel.

#define A_ref(i,j) A[(j)*Alda+(i)]

for (k=0; k<n; k+=b) {

// Reduce current diagonal block
LATRD( ..., &A_ref( k, k ), Alda , work , ldwork );

// Update trailing submatrix
SYR2K( ..., &A_ref( k+b, k ), Alda , work( b+1 ), ldwork , &A_ref( k+b, k+b ), Alda );

}

// Reduce the rest of the matrix
SYTD2( ..., &A_ref( k, k ), Alda , &info);

Listing 5.1: Blocked routine for the reduction to tridiagonal form.

The overall cost of routine sytrd is 4n3/3 flops, with 2n3/3 flops performed via calls to syr2k,
and the rest corresponding to the Level-2 BLAS gemv and symv.
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5.3.1 The impact of the algorithmic block size in sytrd

In order to analyze the effect of the algorithmic block size on sytrd, we perform an initial
test using different block sizes b for distinct problem dimensions. Figure 5.3 reports the results
in GFLOPS when the experiment is run using a single Cortex-A15 core. Those results show a
performance gap between the lowest and highest GFLOPS rates of about 0.5 GFLOPS for the
smallest problem size. However, for the largest problem the difference is around 0.25 GFLOPS.
With this experiment we expose that the block size exerts a relevant impact on performance along
the problem size range.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000  2000  3000  4000  5000  6000  7000  8000

G
FL

O
P
S

Problem dimension n

SYTRD on a single Cortex-A15 core within the Exynos 5422 SoC

b =  32

b =  64

b =  96

b = 128

b = 160

b = 192

b = 224

b = 256

b = 288

b = 320

b = 352

Figure 5.3: Performance of sytrd on a single Cortex-A15 core within the ARM big.LITTLE AMP
embedded in the Exynos 5422 SoC using different algorithmic block sizes.

To better understand the role of the block size b, Figure 5.4 profiles the influence of this
parameter on the distinct building blocks appearing in sytrd routine. As reported in the figure,
the symmetric matrix-vector product (symv, green lines) accounts for a major part of the global
execution time, with this fraction of the practical cost growing with the problem size. This implies
that any optimization of this particular kernel, via either an architecture-aware implementation or
an asymmetry-aware parallelization, can be expected to yield important gains on the performance
of the reduction routine. In addition, the execution time of symv is basically independent of the
block size. Therefore, the optimization of this parameter for sytrd can be pursued by taking into
account only the other two components of the reduction, namely gemv and syr2k.

The execution time of the general matrix-vector products (carried out via gemv, dark blue
lines) grows with the block size, while that of the symmetric rank-2k update (syr2k, red lines) has
the opposite behavior. The reason for these opposite trends lies in that an increase of the block size
shifts part of the computational cost of the reduction (in the order of n2b flops) from the symmetric
rank-2k update to the general matrix-vector product. This has a minor impact on the theoretical
cost/execution time of the syr2k kernel, as the volume of computations performed in terms of this
type of operations is 2n3/3 flops; indeed, the reduction in the execution time of this component
is basically due to the use of a larger block size, which delivers a higher GFLOPS rate. However,
increasing the amount of flops that are cast in terms of gemv has a major effect on the practical
cost of gemv, as this is a memory-bound operation that proceeds at a much lower GFLOPS rate.
In other words, although increasing b produces a small raise in the amount of flops that are cast in
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terms of gemv (when compared to the total flops of the reduction routine), the practical cost (i.e.,
execution time) becomes much larger due to the low performance of this kernel.
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Figure 5.4: Profile of execution time spent by sytrd on a single ARM Cortex-A15 core embedded
in the Exynos 5422 SoC. This experiment sets the block size to either 64 and 352 for
comparison.

5.3.2 Performance of the optimized sytrd

This section shows the performance benefits of a tuned selection of the block size and core
configuration, together with the integration of architecture-aware micro-kernels and asymmetry-
aware parallel version of the building blocks for sytrd.

During the execution of the routine, we dynamically adjust the number/type of cores indepen-
dently for the main building blocks in order to tune the performance depending on the dimensions
of the operands that are involved in each call to a building block. This dynamic optimization for
sytrd was applied to gemv and syr2k. Note that, for symv, no dynamic optimization is nec-
essary, since using the Cortex-A7 cluster and one Cortex-A15 core is always the best option (see
Section 5.2.1).

Figure 5.5 illustrates the performance of the sytrd routine, using the model-driven optimal
algorithmic block size (b = 64) that will be presented in Section 5.6. The architecture-aware micro-
kernels for the Level-2 BLAS kernels and the asymmetry-aware parallelizations of the Level-2/3
kernels correspond to the implementations presented in Chapter 3. The plots include a configuration
with no optimizations applied to the Level-2 BLAS (labeled as “Initial”) as well as one where all
optimizations are present (labeled as “Asymmetry-aware”). Additionally, for comparison purposes,
the plot includes four additional reference configurations:

• 4 x A15: execution on the Cortex-A15 cluster only (4 threads).

• 4 x A7: execution on the Cortex-A7 cluster only (4 threads).

• Ideal - 4: theoretical performance rate obtained by adding the GFLOPS rates of the isolated
Cortex-A15 cluster and the isolated Cortex-A7 cluster.
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• Ideal - 1: theoretical performance rate obtained by adding the GFLOPS rate of a single
Cortex-A15 core multiplied by 4 (number of cores in the cluster) plus that of a single Cortex-
A7 multiplied by 4.
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Figure 5.5: Performance of sytrd on the ARMv7 big.LITTLE embedded in the Exynos 5422
SoC. This experiment sets the block size to b = 64.

Let us discuss in some detail the results in Figure 5.5. The use of the Cortex-A15 cluster only
shows a performance rate that is almost flat, close to 3 GFLOPS. The reason is that the Level-2
BLAS, dominates the execution time of the routine, and adding more than one Cortex-A15 core
does not contribute any performance benefit. In contrast, the trend observed for the line that
employs the Cortex-A7 cluster only shows an asymptotic performance that is close to that of the
Cortex-A15 cluster, as the Level-2 BLAS do scale with the problem dimension for this type of cores.
These results can be related back to the analysis of the building blocks symv, gemv and syr2k in
Section 5.2.

The asymmetry-aware configuration shows a consistent performance advantage over its ho-
mogeneous (i.e., symmetric or single-cluster) counterparts as the former takes advantage of the
computational power of the Cortex-A15 cores for the execution of the Level-3 BLAS syr2k and
the scalability of Level-2 BLAS symv/gemv on the Cortex-A7 cluster. Concretely, for the largest
problem size, the speed-up of this solution grows to be above 2× with respect to the execution using
any of the two clusters in isolation. In addition, the asymmetry-aware configuration benefits from
the multi-threaded Level-2 BLAS and the optimized micro-kernels to deliver a performance rate
that is up to 6× higher than the initial configuration. Focusing on the ideal (theoretical) configu-
rations, our solution attains a performance rate that lies close to that of the Ideal-4 case, showing
a fair distribution of the workload between the two clusters and no significant performance leaks.
A less pleasant scenario appears in the comparison against the Ideal-1 case. This is explained by
the actual lack of scalability of the Level-2 BLAS when executed on the Cortex-A15 (Chapter 3),
in contrast with the unrealistic assumption of perfect scalability for the Ideal-1 line.

The major cause for the acceleration of sytrd, which allows to narrow the gap between the
performances of the asymmetry-aware configuration and Ideal-4, is the large amount of symmetric
matrix-vector products (symv) which are, in turn, large and independent of the block size. Large
matrix-vector products result in appealing opportunities to exploit a parallel configuration.
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5.4 Reduction to Bidiagonal Form (gebrd)

Given a dense matrix A ∈ Rm×n, its reduction to bidiagonal form B by an orthogonal similarity
transformation is given by B = QTAP . Listing 5.2 displays a simplified C code that computes this
type of reduction for an m×n matrix stored starting at address A with column leading dimension
Alda. For simplicity, we assume hereafter that the matrix size is m = n and this parameter
is an integer multiple of the block size b. Furthermore we assume that the code overwrites the
corresponding entries of the original matrix with those of the upper bidiagonal matrix B. For this
purpose, it leverages the numerical kernels (or building blocks) labrd, gemm and gebd2. Routine
labrd from LAPACK reduces the first b rows and columns of a general matrix to a bidiagonal
form using the BLAS-2 gemv kernel. The gebd2 kernel reduces a general matrix to bidiagonal
form using an unblocked algorithm.

#define A_ref(i,j) A[(j)*Alda+(i)]

for (k=0; k<n; k+=b) {

// Reduce current diagonal block
LABRD( ..., b, &A_ref(k,k), Alda , work(n*b), n );

// Update trailing submatrix
GEMM( ..., &A_ref( k+b, k ), Alda , work(n*b+b), n, &A_ref( k+b, k+b ), Alda );

GEMM( ..., work(b), n, &A_ref( k, k+b ), Alda , &A_ref( k+b, k+b ), Alda );

}

// Reduce the rest of the matrix
GEBD2( ..., &A_ref( k, k ), Alda , work , &info);

Listing 5.2: Blocked routine for the reduction to bidiagonal form.

For gebrd, the effect of the Level-2 BLAS is more prominent than it was in sytrd. The total
cost of this reduction, 8n3/3 flops, is split into 2n3/3 flops performed in terms of the Level-3 BLAS
for the general matrix-matrix multiplication (gemm) and 2n3 flops as calls to gemv (invoked from
labrd and gebd2 routines).

5.4.1 The impact of the algorithmic block size in the Reduction to Bidiagonal Form
(gebrd)

Following the same idea as for sytrd, in this section we study the configuration of the type
and number of cores that execute the main building blocks of gebrd in order to test the potential
performance increase. In order to analyze the effect of varying the block size, we perform an initial
experiment with different algorithmic block sizes and problem dimensions. The results of this test
in GFLOPS are reported in Figure 5.7. As for the sytrd case, the difference between the highest
and lowest GFLOPS rates for the smallest problem size is around 0.5 GFLOPS. However, for the
largest problem, the difference is smaller than for sytrd in this case being around 0.17 GFLOPS.

To gain a deeper insight on the behavior of gebrd depending on the block size b, we obtain a
profile of the main building blocks that compose gebrd. The profile is shown in Figure 5.7 and
proves that the execution time of this reduction is clearly split into two components: the general
matrix-vector products basically found in PF (gemv, dark blue lines), and (two) general matrix-
matrix multiplications for TU (gemm, light blue lines). Increasing the block size here shifts part
of the flops from TU to PF, with an effect on performance similar to that already discussed for
sytrd.

88



5.4. REDUCTION TO BIDIAGONAL FORM (GEBRD)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000  2000  3000  4000  5000  6000  7000  8000

G
FL

O
P
S

Problem dimension m = n

GEBRD on a single Cortex-A15 core within the Exynos 5422 SoC

b =  32

b =  64

b =  96

b = 128

b = 160

b = 192

b = 224

b = 256

b = 288

b = 320

b = 352

Figure 5.6: Performance of gebrd on a single Cortex-A15 core within the ARM big.LITTLE AMP
embedded in the Exynos 5422 SoC using different algorithmic block sizes.
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Figure 5.7: Profile of execution time spent by gebrd on a single ARM Cortex-A15 core embedded
in the Exynos 5422 SoC. This experiment sets the block size to 64 and 352, respectively,
for comparison.

5.4.2 Performance of the optimized gebrd

We next build upon the architecture-aware micro-kernels and asymmetry-aware parallel version
of the building blocks of gebrd presented in Chapter 3, in order to study the effect of selecting an
optimal block size and core configuration. As already done for sytrd, we dynamically adjust the
number and type of cores for the main kernels of this reduction, namely gemv and gemm.

Figure 5.8 reports the performance of gebrd (b = 96). The “Initial”line refers to a configu-
ration with no optimizations applied to BLAS-2, while the “Asymmetry-aware” line integrates all
the proposed optimizations. Again, for comparison purposes, we include the performance for the
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Cortex-A15 cluster (4 x A15) and Cortex-A7 cluster (4 x A7) in isolation, the theoretical GFLOPS
rate as the addition of the performance of both clusters in isolation (Ideal - 4) and the theoretical
performance rate as the addition of the performance of a single core of each type multiplied by 4
(Ideal - 1).
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Figure 5.8: Performance of gebrd on the ARMv7 big.LITTLE embedded in the Exynos 5422
SoC. This experiment sets the block size to b = 96.

In contrast to the results obtained for sytrd, Figure 5.8 shows that, for gebrd, the asymmetry-
aware configuration steadily approaches but does not reach the performance of the Ideal-4 curve,
providing a 2× higher performance rate than the initial configuration. Although there exists a large
amount of calls to gemv in gebrd, and the aggregated time spent on this kernel is considerably
large compared with the total execution time, only a small fraction of the gemv kernels involve a
matrix operand that is large enough to benefit from a parallel configuration. This is also the case
even for large problem sizes, as the matrix operand passed to the matrix-vector multiplications
decreases in size at each iteration step. Thus, using Ideal-4 as a theoretical reference function here
is, to a certain extent, unrealistic.

5.5 Reduction to Upper Hessenberg Form (gehrd)

Given a dense matrix A ∈ Rn×n, its reduction to upper Hessenberg form H by an orthogonal
similarity transformation is given by H = QTAQ. Listing 5.3 displays a simplified C code that
computes this decomposition for an n×n matrix stored starting at address A with column leading
dimension Alda. For simplicity, we assume hereafter that the matrix size is an integer multiple
of the block size b. The code overwrites the corresponding entries of the original matrix with the
upper Hessenberg matrix H, leveraging the numerical kernels (or building blocks) lahr2, gemm,
trmm, larfb and gehd2 for this purpose. Routine lahr2 mainly employs gemv, trmv, gemm
and trmm to reduce the specified number of first columns of a general rectangular matrix A so that
elements below the specified subdiagonal are zero. Furthermore, it returns the auxiliary matrices
which are needed to apply the transformation to the unreduced part of A. Routine larfb applies
a block reflector or its transpose to a general rectangular matrix using gemm and trmm as main
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building blocks. Finally, routine gehd2 implements an unblocked algorithm that reduces a general
square matrix to upper Hessenberg.

#define A_ref(i,j) A[(j)*Alda+(i)]

for (k=0; k<n; k+=b) {

// Reduce current diagonal block
LAHR2( ..., &A_ref( 1, k ), Alda , work , ldwork );

// Apply block reflector
GEMM( ..., work , ldwork , &A_ref( k+b, k ), Alda , &A_ref( 1, k+b ), Alda );

TRMM( ..., &A_ref( k+1, k ), Alda , work , ldwork );

for(j=0; j<b-2; j++)

AXPY( ..., work( ldwork*j+1 ), &A_ref( 1, k+j+1 )

LARFB( ..., &A_ref( k, k+1 ), Alda , &A_ref( k+1, k ), Alda , &A_ref( k+1, k+b ), Alda , work , ldwork);

}

// Reduce the rest of the matrix
GEHD2( ..., &A_ref( k, k ), Alda , work , &info);

Listing 5.3: Blocked routine for the reduction to upper Hessenberg form.

The cost of this reduction is 10n3/3 flops, with 20% cast in terms of distinct types of BLAS-2
matrix-vector products (called from lahr2 and gehd2) and the remaining 80% in efficient Level-3
BLAS [86].

5.5.1 The impact of the algorithmic block size in the Reduction to Upper Hessenberg
Form (gehrd)

As in the previous reductions, we first analyze how the type and number of cores that execute
the main building blocks of gehrd affect performance. As an initial step we run gehrd while
varying the block size b for different problem dimensions with the aim of exposing the impact of
this parameter. Figure 5.9 reports the performance obtained in GFLOPS for this test. According to
the results, a difference of 0.5 GFLOPS exists between the highest and lowest performance rates for
the smallest problem size. In contrast with the previous reductions, for gehrd the performance gap
increases with the problem dimension for small block sizes. This is due to the higher percentage
of flops performed in kernels of BLAS-3, which favors the use of larger block sizes. The main
conclusion from this preliminary experiment is that the block size exerts a relevant and consistent
impact on performance across the problem size range.

As shown in Figure 5.10, the execution time is mainly due to two components, namely gemv
and BLAS-3 (gemm and trmm). The execution time of gemv (dark blue lines) grows with the
block size, while BLAS-3 (light blue lines) has the opposite behaviur. However, since about 80% of
the flops are executed in BLAS-3 calls, the execution time corresponding to gemv, for this TSOR,
amounts to about 50% of the total. This favors the use of larger block sizes as the performance
decreases for gemv due to the adoption of a larger block size (dark blue lines) is outweighed by
the gains obtained in BLAS-3 due to the use of a larger block size (light blue lines).

5.5.2 Performance of the gehrd routine

In this section we analyze the performance benefits of a tuned selection of the block size and core
configuration when gehrd is run on top of the asymmetry-aware version of BLIS. In the following
test the number and type of cores of the main building blocks of gehrd (gemv and gemm) are
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Figure 5.9: Performance of gehrd on a single Cortex-A15 core within the ARM big.LITTLE AMP
embedded in the Exynos 5422 SoC using different algorithmic block sizes.
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Figure 5.10: Profile of execution time spent by gehrd on a single ARM Cortex-A15 core em-
bedded in the Exynos 5422 SoC. This experiment sets the block size to 64 and 352,
respectively, for comparison.

dynamically adjusted in order to improve the performance depending on the dimensions of the
operands of each call to a building block.

Figure 5.11 illustrates the performance of routine gebrd using the optimal algorithmic block size
b = 128 (chosen experimentally). As for the previous reductions, the plots include the configuration
with no optimizations applied to BLAS-2 (labeled as “Initial”) as well as an alternative where
all optimizations are present (labeled as “Asymmetry-aware”). We also include, for comparison
purposes, the performance for both clusters in isolation (4 x A15 and 4 x A7); and two ideals, one
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adding the performance of the clusters in isolation (Ideal - 4) and other adding the performance of
one core of each type multiplied by 4 (Ideal - 1).
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Figure 5.11: Performance of gehrd on the ARMv7 big.LITTLE embedded in the Exynos 5422
SoC. This experiment sets the block size to b = 128.

The plot in Figure 5.11 shows that, for this TSOR routine, the performance of the Ideal-4 curve
is never reached, but steadily approached by the asymmetry-aware configuration. In addition, the
performance rate of gehrd is 3× higher than that of the initial consideration, and slightly higher
than the increment reached for gebrd due to the larger amount of time spent on BLAS-3 operations
in this case. As for gebrd, the size of the matrix operand involved in gemv is large enough to
benefit from a parallel configuration for this kernel in a very small fraction of the invocations. For
this reason, even though there exists a large amount of calls to gemv in gehrd and a long time is
spent on them, using Ideal-4 as a theoretical reference is overly optimistic.

5.6 Modeling the Performance of the TSOR Routines

In the previous sections we illustrated the relevance of selecting the optimal block size and
core configuration for the three building blocks appearing in sytrd (namely, symv, gemv and
syr2k). In this section, we propose a methodical approach to model performance; see also [83, 10,
84, 85]. Here we select the optimal block size for the TSOR procedures, based on the experimental
performance observed for their building blocks and the theoretical flop count for each type of
building block. In order to illustrate this, we employ the specific case of the reduction to tridiagonal
form of a symmetric n × n matrix A via routine sytrd. The same method carries over to the
remaining two TSOR procedures.

At this point, we remind some observations connecting them to the experiments in Sections 5.2
and 5.3:

• Consider, for simplicity, that n is an integer multiple of the block size: n = r · b, for a given
integer r. The blocked single-step reduction to tridiagonal form processes the n×n matrix A,
from top-left to bottom-right, in a set of iterations j ∈ {1,2, . . . ,n/b}, in blocks of b-column
panels starting at rows/columns ̂ = (j − 1)b = 0, b, 2b, . . . ,(r − 1)b. In general n may not
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be an integer multiple of the block size and, in such case, the last panel receives a special
treatment using an unblocked code.

• At iteration j, the assembly of V requires b symmetric matrix-vector multiplications, of
decreasing dimensions n− (̂ + 1), n− (̂ + 2), n− (̂ + 3), . . . , n− (̂ + b). Overall, the reduction
performs n− 2 calls to symv, involving matrices of dimensions n− 1, n− 2, . . . ,2. Thus, the
block size b has no effect on the number of flops nor the shapes of the operands passed to
the sequence of calls to symv. We can conclude, hence, that b should exert no impact on the
performance of sytrd. This observation is confirmed by the results in Figure 5.4.

• The experimental analysis in Chapter 3 revealed that a close-to-optimal configuration for the
parallel execution of symv, on the Exynos 522 SoC, employs a single Cortex-A15 core plus the
full quad-core Cortex-A7 cluster. Slightly higher performance can be attained by activating
a second Cortex-A15 core, but this will come at a non-negligible energy cost, which may
be relevant for a low-power architecture. In consequence, we prefer the configuration with a
single Cortex-A15 core. We use hand-coded micro-kernels for both types of core architectures,
and a dynamic distribution of the iteration space of Loop 1 among the system cores, with
cache-aware granularity mc that depends on the core type (see Tables 5.1 and 5.2).

• The assembly of V at iteration j requires 6 · b general matrix-vector multiplications of dimen-
sions that depend on the algorithmic block size. Concretely, the dimensions of gemv vary
(linearly in both dimensions) from n − (̂ + 1) × 1 to n − (̂ + b) × b. As a consequence, the
overall number of flops performed by gemv directly depends on the algorithmic block size of
sytrd, and we can conclude that b plays some role on performance. This is confirmed by the
results in Figure 5.4.

• The experimental analysis in Chapter 3 hinted similar conclusions for gemv to those exposed
for symv in the sense that close-to-optimal performance is obtained by using a single Cortex-
A15 core plus the full quad-core Cortex-A7 cluster. However, for small problem dimensions,
it is more beneficial to use a single Cortex-A15 core.

• At the end of each iteration j, routine sytrd invokes the syr2k kernel to update the trailing
submatrix in A of order n − (̂ + b) + 1, using two panels of dimension n − (̂ + b) + 1 × b
each (A22 := A22−UV T −V UT ). Therefore, increasing the block size b accelerates the decay
of the trailing submatrix dimensions as the iteration progresses, but augments the number
of columns in the panels. In conclusion, we can expect that b has a certain effect on the
performance of the sequence of calls to syr2k, because it affects the operands’ dimensions
and shapes. This is reflected by the results in Figure 5.4.

• The algorithmic block size directly affects the matrix shapes involved in syr2k and changes
the threshold value for which it is more beneficial to use only the Cortex-A15 cluster or the
full SoC. In conclusion, we should employ either the Cortex-A15 cluster or the full SoC when
the dimension of A22 is respectively or larger than the threshold for a given algorithmic block
size.

To sum up, at iteration j ∈ {1,2, . . . ,n/b}, routine sytrd invokes the following Level-2 and
Level-3 BLAS routines:

1. b− 1 calls to symv, each involving a square matrix of order r − k, with r = n− (j − 1)b and
k = 1,2, . . . ,b− 1.

2. 6b calls to gemv, each of the b involving a matrix of dimension (r−k)×k, with k = 1,2, . . . ,b.
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3. A single call to syr2k to perform two updates of the form Ĉ+ = Â · ÂT , on a triangular part
of a square result matrix Ĉ of order s = n− jb, and with the input operand Â of dimension
s× b.

Therefore, the total cost of the routine, 4n3/3 flops, can be distributed among the three building
blocks as follows:

1. symv:
∑n/b

j=1

∑b−1
k=1 2(r − k)2 = 2n3/3 flops.

2. gemv:
∑n/b

j=1 12(rb2/2− b3/3) = 3n2b flops.

3. syr2k:
∑n/b

j=1 2s2b = 2n3/3 flops.

Note that the number of calls to symv and the dimension of the matrix operand for this kernel are
independent of the algorithmic block size. Therefore, this type of kernel does not play a role in the
optimization of b, and our target can be simplified to the minimization of the execution time for
gemv and syr2k only. This can be formulated as:

min
b
{Tgemv + Tsyr2k},

where the execution time due to the flops performed via gemv and syr2k are given by

Tgemv =
∑n/b

j=1

∑b
k=1

12(r−k)k
Ggemv(r−k,k,C) and

Tsyr2k =
∑n/b

j=1
2s2b

Gsyr2k(s,b,C) ,

respectively. In the last expressions, Ggemv(p,q,C) and Gsyr2k(p,q,C) stand for the GFLOP rates
delivered by the corresponding routines when operating on a problem of dimension (p,q) using
a core configuration C. Note that in our model we distinguish the GFLOP rates of gemv for
the transposed and non transposed case. At this point, we remind that, for gemv, the optimal
configuration employs either a single Cortex-A15 core or 1 Cortex-A15 + 4 Cortex-A7 cores. In
contrast, for syr2k the optimization procedure has to select between 4 Cortex-A15 cores or the
full Exynos 5422 SoC; see Figure 5.1.

This optimization model guides the search for the optimal block size and core configuration for
sytrd using the data for the experimental GFLOPS rates observed for syr2k and gemv. As we
are only interested in a qualitative comparison of the execution time for different values of b and
core configurations, we do not need to perform an exhaustive evaluation of the building blocks.
Instead, we can select some representative values and interpolate the GFLOPS for the missing
performance rates. Moreover, we note that the building blocks gemm and gemv appear also in
the remaining two TSOR procedures, gehrd and gebrd. Therefore, we can reuse most of the
experimental evaluation of the building blocks to tune the block size and core configuration for all
three TSOR routines.

Figure 5.12 shows the evaluation of the performance determined via the model in comparison
with the practical results obtained from an exhaustive execution of sytrd using different algo-
rithmic block sizes. For each problem dimension, the top plot in that figure reports model-driven
estimates of the time increment with respect to the execution time obtained when using the optimal
block size for that problem size. Concretely, for the problem of dimension n = 1,000, the variation
of time is normalized with respect to the execution time using an algorithmic block size b = 32
(which corresponds to the optimal value of b for that problem size); for n ranging from 1,250 to
2,500 the results are normalized with respect to the execution time using b = 64; and for n > 2,500,
they are normalized with respect to the execution time using b = 96. In order to offer quantitative
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variations of the execution time, the model should have also taken into account the execution time
of symv. However, as we are only interested in a qualitative detection of the optimal algorithmic
block size, we can simplify the search by neglecting the impact of symv in the model. Overall, the
model estimates that the optimal block size is either 64 or 96, with the differences between these
two algorithmic block sizes being below 1%. In addition, the model exposes that the execution
time grows with the algorithmic block size.

The model-driven search of the optimal algorithmic block size is validated with the exhaustive
evaluation of the performance of sytrd in the bottom plot in Figure 5.12. The practical results
confirm that the actual algorithmic block sizes yielding the highest performance are also 64 and
96, with the performance declining when the algorithmic size exceeds the largest of these values.
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Figure 5.12: Model-driven estimation of the relative execution time (top) and actual performance
(bottom).

The previous experiment shows that the model can be used to perform a search of the optimal
algorithmic block size without testing the factorization itself. However, as the model predicts
performance differences below 1% between the two close-to-optimal algorithmic block sizes, (though
similar to those observed in practice,) this search methodology may introduce small deviations in
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the value selected for b. Table 5.3 quantifies the impact of a suboptimal choice of b, comparing the
execution time for executions that employ the algorithmic block size predicted by the model against
those with the optimal algorithmic block size obtained from the experimentation. The results in
the table reveal that the relative error is consistently below 2% (except in one case), being smaller
than 1% for most problem dimensions.

Problem Optimal (b) Difference Problem Optimal (b) Difference
dimension Model Real (%) dimension Model Real (%)

1,000 32 32 – 4,750 96 64 1.66
1,250 64 64 – 5,000 96 64 1.82
1,500 64 64 – 5,250 96 96 –
1,750 64 64 – 5,500 96 64 0.36
2,000 64 64 – 5,750 96 64 1.05
2,250 64 64 – 6,000 96 64 0.69
2,500 64 64 – 6,250 96 64 0.17
2,750 96 64 1.89 6,500 96 96 –
3,000 96 64 1.78 6,750 96 96 –
3,250 96 64 2.19 7,000 96 64 0.16
3,500 96 64 0.86 7,250 96 96 –
3,750 96 64 1.85 7,500 96 96 –
4,000 96 64 1.81 7,750 96 64 1.32
4,250 96 64 1.59 8,000 96 64 0.33
4,500 96 64 1.16 Average 0.71

Table 5.3: Relative differences of time for sytrd between executions using the optimal block size
determined by the model and the real optimal value detected via exhaustive experimen-
tal tests.

5.7 Summary

In this chapter, we have presented architecture- and asymmetry-aware realizations of the TSOR
procedures for the solution of general and symmetric dense eigenvalue problems as well as singu-
lar value problems for ARM big.LITTLE multi-core architectures. Our experiments with tuned
versions of these routines, specifically optimized for the ARM Cortex-A15 and Cortex-A7 cores
present in the big.LITTLE target, show a significant acceleration of the execution time compared
with a simple execution of LAPACK’s legacy codes for this purpose.

Our theoretical and practical analyses reveal the large impact of the Level-2 BLAS kernels
on the performance of the TSOR procedures and the critical roles of the algorithmic block size
and the core configuration. Concretely, the block size has to be finely adjusted to distribute the
workload between the Level-2 and Level-3 kernels, taking into account that the memory-bound
nature of the former often places this type of operations on the critical path of the algorithm.
In addition, an optimal execution also depends on the number and type of cores employed for
each type and dimension of the building blocks, with these two parameters determining when it
becomes convenient to add the LITTLE cores to the execution. As a spin off of this study, we
propose a model to predict the optimal algorithmic block size for a TSOR routine based on the
input dimensions, the main building blocks of the reduction, and the flops performed by them.

97



CHAPTER 5. REDUCTION TO CONDENSED FORMS

Our experiments reveal that the model is highly accurate, providing an algorithmic block size that
deviates by less than 1% from the best GFLOPS rate.

Overall, we believe that the approach applied to optimize the routines for the TSOR to con-
densed forms on the target platform presented in this chapter carries over to other asymmetric and
heterogeneous architectures, including hybrid CPU-GPU systems, as well as multisocket/multi-core
servers where distinct CPUs/cores operate at different frequencies.
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CHAPTER 6

Conclusions

6.1 Conclusions and Main Contributions

The main goal of the dissertation was to study, design, develop and analyze experimental solu-
tions (models, programs, tools and techniques) that are energy-aware for scientific and engineering
applications on low-power architectures.

At the conclusion of this work, the main contributions of this dissertation are the following:

• The adaptation of the symv and gemv BLAS-2 kernels in BLIS to an AMP.

• The adaptation of the BLAS-3 kernels in BLIS and an experimental study reflecting the
performance gains attained by the asymmetry-aware version of the library.

• The performance and energy efficiency study of the Cholesky and LU factorizations when
relying on the BLAS-3 asymmetry-aware version.

• The proposal of thread-level malleability technique to share computational resources in the
task parallel execution of matrix factorizations.

• The performance and energy efficiency study of the Two-Sided Orthogonal Reductions (TSOR)
routines when relying on the BLAS-3 and BLAS-2 asymmetry-aware versions. This contribu-
tion includes the creation of a model in order to determine the optimal block size and number
of cores for the symv and gemv kernels at each step of the TSOR routines.

The main contribution of this dissertation is the adaptation of BLAS-2 and BLAS-3 kernels
from BLIS to create an asymmetry-aware version of the library that exploits the resources of an
AMP, which has been the basis for the remaining parts of the dissertation. Using this library as
the starting point, we have developed solutions for DLA operations that belong to the LAPACK
level, completing the creation of asymmetry-aware DLA operations at all levels.

As a part of the thesis, and as a consequence of the complete study carried out for the LAPACK
kernels, we have proposed a new technique to share execution resources among running tasks that
we named as thread-level malleability. This technique can be applied either on symmetric or
asymmetric platforms, reporting performance gains thanks to the better utilization of the existing
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resources. In our case, the technique has been applied to DLA operations. In principle, the same
idea can be applied to libraries of different nature, since it is a general strategy to share or reuse
threads in a code.

An additional contribution of this thesis is the development of models to estimate performance
and energy efficiency for different DLA operations on both, symmetric and asymmetric platforms.
Those models gave us a better understanding of the operations and their behavior, especially on
AMPs. In addition, they may be used in different scenarios, for example, they can be applied to
any system running DLA operations in order to make scheduling decisions.

The following sections discuss the contributions and summarize the corresponding conclusions
in more detail.

6.1.1 BLAS-3 kernels

An asymmetric-aware version of the BLAS-3 kernels included in BLIS was developed in order
to exploit the available resources on an AMP. Given that all BLAS-3 kernels (except the trsm
operation) can be implemented following the same structure as the matrix multiplication, this
specific kernel was used in order to explore different strategies to distribute the workload between
the two type of cores present in the ARMv7 big.LITTLE (quad-core cortex A15 + quad-core cortex-
A7) SoC. The key to our development was the integration of a coarse-grain scheduling policy, which
dynamically distributes the workload between the two core types present in those architectures,
combined with a complementary static schedule that repartitions this work among the cores of the
same type.

With the promising performance results obtained for the matrix multiplication, the same strat-
egy was applied to the remaining BLAS-3 operations for distinct operand shapes. Our results
revealed excellent improvements in performance compared with the homogeneous implementations
that operate exclusively on one type of core (either A15 or A7), and also with respect to multi-
threaded implementations that simply apply a symmetric workload distribution and do not take
into account the different cache organization of the cores and performance capabilities. In general,
the results show considerable performance acceleration for the BLAS-3 kernels, and more moderate
for the triangular system solve.

The complete asymmetry-aware BLAS-3 was tested also on a 64-bit ARMv8 architecture, with
different number of big/LITTLE cores (four LITTLE cores + two big cores), delivering similar
results as observed for the 32-bit ARM architecture. This experimental study was conclusive
to demonstrate flexibility of our solution, as the second platform features different amount of
big/LITTLE cores, clock frequency and precision.

6.1.2 BLAS-2 kernels

Following the same idea applied on BLAS-3, two operations of BLAS-2 were made asymmetry-
aware. The changes in this case included using the cache optimization parameters, integrating the
appropriate scheduling mechanism, developing hand-tuned micro-kernels, parallelizing the codes,
and finding the cache optimization parameters for the multi-threaded kernels.

The hand-tuned micro-kernels exploit data locality when accessing data in the registers, pro-
viding gains in performance thanks to the better use of the resources. Additionally, the symv and
gemv routines were parallelized in order to distribute the workload between the distinct types of
cores. This modification turned out in a study about the appropriate number and type of cores
that must be used in each case.
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All the changes made in order to make symv and gemv asymmetry-aware led to important
performance gains that complete the work already performed for BLAS-3 and shows the importance
of employing full asymmetry-aware DLA libraries.

6.1.3 TSOR routines on AMPs and models

A contribution of this dissertation consisted in the realization of architecture- and asymmetry-
aware versions of the TSOR procedures for the solution of general and symmetric dense eigenvalue
problems as well as the computation of the SVD on ARM big.LITTLE multi-core architectures.
The experiments with tuned versions of these routines, specifically optimized for the ARM Cortex-
A15 and Cortex-A7 cores present in the ODROID-XU3, showed a significant acceleration of the
execution time compared with a simple execution of LAPACK’ legacy codes for this purpose.

The theoretical and practical analyses revealed the large impact of the BLAS-2 kernels on the
performance of the TSOR procedures and the critical roles of the algorithmic block size and the core
configuration. Concretely, the block size has to be finely adjusted to distribute the workload between
the BLAS-2 and BLAS-3 kernels, taking into account that the memory-bound nature of the former
often places this type of operations on the critical path of the algorithm. In addition, an optimal
execution also depends on the number and type of cores employed for each type and dimension
of the building blocks, with these two parameters determining when it becomes convenient to add
the LITTLE cores to the execution. As a spin off of this insight, a simple model was proposed to
predict the optimal algorithmic block size for a TSOR routine based on the input dimensions, the
main building blocks of the reduction, and the flops performed by them.

6.1.4 LU and Cholesky factorization on big.LITTLE

Based on the asymmetry-aware BLIS-3, a legacy implementation of LAPACK was migrated to
run on the target AMP. In doing so, the benefits and drawbacks of conducting a simple (plain)
migration which does not perform any major optimizations in LAPACK were explored. The exper-
imentation with two major routines from LAPACK, the LU and the Cholesky factorization, illus-
trates two distinct scenarios (cases), ranging from a compute-bound operation/routine (Cholesky
factorization) where high performance is easily attained from this plain migration; to a compute-
bound operation (LU factorization) where the same level of success will require a significant reor-
ganization of the code that introduces an advanced scheduling mechanism.

More specifically, the plain migration of the LU factorization provides good results for large
matrix sizes. However, for small and medium sizes the panel factorization is a bottleneck that
reduces performance significantly. As a mean to palliate the effect of the panel factorization, we
adopted a look-ahead. The analysis of its impact exposed a significant performance improvement
for medium and large matrix sizes.

The study of these two LAPACK routines exposed two important insights: taking advantage of
an asymmetry-aware DLA library of basic operations (BLAS) is essential in order to exploit asym-
metric platforms and, given that many scientific applications use more sophisticated DLA opera-
tions, new strategies should be considered when adapting the whole DLA stack (BLAS+LAPACK)
to AMPs.

6.1.5 Thread-level malleability

A contribution of this dissertation was the introduction of Work Stealing (WS) and Early Ter-
mination (ET) as two novel techniques to avoid workload imbalance during the execution of matrix
factorizations, enhanced with look-ahead, for the solution of linear systems. These techniques may
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be applied when having more than one task in the code, and they will be beneficial if workload im-
balance is present. Using the LU as an example, we could show that the WS mechanism especially
benefits from the adoption of a malleable thread-level instance of BLIS, which allows the thread
team in charge of the panel factorization, upon completion of this task, to be reallocated to the
execution of the trailing update. The ET mechanism tackles the opposite situation, with a panel
factorization that is costlier than the trailing update. In such scenario, the team that performed
the update communicates to the second team that it should terminate the panel factorization,
advancing the factorization process into the next iteration.

The results on an Intel Xeon E5-2603 v3 showed the performance benefits of the LU version
enhanced with malleable BLIS and ET compared with a plain LU factorization as well as a version
with look-ahead. The experiments also reported competitive performance compared with an LU
factorization that was parallelized by means of a sophisticated runtime, such as OmpSs, that intro-
duces look-ahead of dynamic (variable) depth. Compared with the OmpSs solution, our approach
offered higher performance for most problem dimensions, seamlessly tuned the algorithmic block
size, and featured a considerably smaller memory footprint as it does not require a sophisticated
runtime support.

To conclude, and thanks to the promising results obtained in our tests, we can expect thread-
level malleability to be crucial in order to exploit the massive thread parallelism of future architec-
tures.

6.2 Related Publications

The contributions of the dissertation are supported by the publication of the content in different
peer-reviewed national and international conferences and journals. In this section, the publications
related to each contribution are listed and classified as directly-related to the content of the disser-
tation, indirectly-related or unrelated.

6.2.1 Directly related publications

6.2.1.1 Chapter 3. Basic Linear Algebra Subprograms (BLAS)

The first step in making DLA libraries asymmetry-aware was the analysis of gemm [28], the
BLAS-3 model operation, in order to identify the best mechanisms to adapt it to an AMP. The
work presented in this paper studies different scheduling schemas that improve gemm performance:
static-asymmetric scheduling, cache-aware static-asymmetric scheduling and cache-aware dynamic-
asymmetric scheduling. That study is extended in [24], where the best scheduling option is applied
not only to gemm, but for all the remaining BLAS-3 operations (except for trsm), for different
loop parallelizations and operand shapes. The second paper completes the work started with the
gemm kernel, proving the feasibility of an asymmetry-aware BLAS-3 and the performance gains
of that adaption. Furthermore, the asymmetry-aware BLAS-3 version was ported to a different
big.LITTLE architecture with a distinct ratio of big/LITTLE cores, consolidating the initial results.

The adaption of symv and gemv BLAS-2 operations, following the same idea as for gemm, are
included as part of the work developed in the construction of asymmetry-aware versions of TSOR
in [8], which will be analyzed in Section 6.2.1.3.

Journal

[28]

Catalán, S., Igual, F. D., Mayo, R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R.
Architecture-aware configuration and scheduling of matrix multiplication on asymmetric multi-core
processors. Journal of Cluster Computing (2016), Vol. 19(3), pp. 1037–1051.
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In this paper, we design and embed several architecture-aware optimizations into a
multi-threaded general matrix multiplication (gemm), a key operation of the BLAS,
in order to obtain a high performance implementation for ARM big.LITTLE AMPs.
Our solution is based on the reference implementation of gemm in the BLIS library,
and integrates a cache-aware configuration as well as asymmetric–static and dynamic
scheduling strategies that carefully tune and distribute the operation’s micro-kernels
among the big and LITTLE cores of the target processor. The experimental results
on a Samsung Exynos 5422, a system-on-chip with ARM Cortex-A15 and Cortex-A7
clusters that implements the big.LITTLE model, expose that our cache-aware versions of
gemm with asymmetric scheduling attain important gains in performance with respect
to its architecture-oblivious counterparts while exploiting all the resources of the AMP
to deliver considerable energy efficiency.

Journal

[24]

Catalán, S., Herrero, J. R., Igual, F. D., Rodŕıguez-Sánchez, R., Quintana-Ort́ı,
E. S., Adeniyi-Jones, C. Multi-threaded dense linear algebra libraries for low-power asymmetric
multi-core processors. Journal of Computational Science (2016), To appear.

Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collec-
tion of numerical tools for many scientific and engineering applications. While there
exist high performance implementations of the BLAS (and LAPACK) functionality for
many current multi-threaded architectures, the adaption of these libraries for asymmet-
ric multi-core processors (AMPs) is still pending. In this paper we address this challenge
by developing an asymmetry-aware implementation of the BLAS, based on the BLIS
framework, and tailored for AMPs equipped with two types of cores: fast/power-hungry
versus slow/energy-efficient. For this purpose, we integrate coarse-grain and fine-grain
parallelization strategies into the library routines which, respectively, dynamically dis-
tribute the workload between the two core types and statically repartition this work
among the cores of the same type.

6.2.1.2 Chapter 4. Factorizations

Upon the adaption of BLAS-3 the natural step was creating an asymmetry-aware version of the
LAPACK operations. To do so, we focused on matrix factorizations for linear systems, selecting
the Cholesky and LU factorizations as examples of different nature included in the library. The
migration of LAPACK routines to an AMP started in [24], where a plain migration of the legacy
version of LAPACK was performed to experimentally assess the benefits, limitations, and poten-
tial of this approach from the perspectives of both throughput and energy efficiency. That work
demonstrated the need of new approaches in order to improve the performance for factorizations,
especially for small/medium matrix sizes. In [36], an exhaustive analysis of different approaches
(combining runtimes, asymmetry-aware DLA libraries and asymmetry-oblivious DLA libraries) for
the Cholesky factorization was performed, showing the benefits of the combination of runtimes
and asymmetry-aware libraries; this work was extended in [37], doing a similar study for the LU
factorization and getting comparable conclusions.

A different strategy to increase performance is proposed in [26], advocating for thread-level
malleable DLA libraries in order to share the execution resources among the tasks in a specific
code. This idea comes as an alternative that does not require a runtime to maximize the use of the
available resources. The application of that idea to AMPs is analyzed in [31], where the benefits
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and drawbacks of using a static (through the proposed malleability approach) and dynamic (relying
on a runtime) scheduling are thoroughly discussed.

The following is a detailed list of the main publications related to this topic:

Journal

[37]

Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez, R., Quintana-
Ort́ı, E. S. Revisiting conventional task schedulers to exploit asymmetry in multi-core architec-
tures for dense linear algebra operations. Parallel Computing (2017), To appear.

Dealing with asymmetry in the architecture opens a plethora of questions related with
the performance- and energy-efficient scheduling of task-parallel applications. While
there exist early attempts to tackle this problem, for example via ad-hoc strategies
embedded in a runtime framework, in this paper we take a different path, which consists
in addressing the asymmetry at the library-level by developing a few asymmetry-aware
fundamental kernels. The appealing consequence is that the architecture heterogeneity
remains then hidden from the task scheduler.

In order to illustrate the advantage of our approach, we employ two well-known matrix
factorizations, key to the solution of dense linear systems of equations. From the per-
spective of the architecture, we consider two low-power processors, one of them equipped
with ARM big.LITTLE technology; furthermore, we include in the study a different sce-
nario, in which the asymmetry arises when the cores of an Intel Xeon server operate
at two distinct frequencies. For the specific domain of dense linear algebra, we show
that dealing with asymmetry at the library-level is not only possible but delivers higher
performance than a naive approach based on an asymmetry-oblivious scheduler. Fur-
thermore, this solution is also competitive in terms of performance compared with an
ad-hoc asymmetry-aware scheduler furnished with sophisticated scheduling techniques.

Conference

Proceedings
[36]

Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez, R., and
Quintana-Ort́ı, E. S. Refactoring conventional task schedulers to exploit asymmetric ARM
big.LITTLE architectures in dense linear algebra. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), (2016), pp. 692–701.

Dealing with asymmetry in the architecture opens a plethora of questions from the
perspective of scheduling task-parallel applications for which there exist early ad-hoc
strategies embedded into an asymmetry-conscious runtimes. In this paper we take a
different path that addresses the complexity of the problem at the library level, via a
few asymmetry-aware fundamental kernels, hiding the architecture heterogeneity from
the task scheduler. For the specific domain of dense linear algebra, we show that this
elegant solution delivers much higher performance than a naive approach based on an
asymmetry-oblivious scheduler. Furthermore, this solution also outperforms an ad-hoc
asymmetry-aware scheduler furnished with sophisticated scheduling techniques.

Arxiv

[26]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R. , and van
de Geijn, R. A. A case for malleable thread-level linear algebra libraries: The LU Factorization
with Partial Pivoting. In Applied Mathematics and Computation, In review.

We propose two novel techniques for overcoming load- imbalance encountered when im-
plementing so-called look-ahead mechanisms in relevant dense matrix factorizations for
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the solution of linear systems. Both techniques target the scenario where two thread
teams are created/activated during the factorization, with each team in charge of per-
forming an independent task/branch of execution. The first technique promotes worker
sharing (WS) between the two tasks, allowing the threads of the task that completes first
to be reallocated for use by the costlier task. The second technique allows a fast task to
alert the slower task of completion, enforcing the early termination (ET) of the second
task, and a smooth transition of the factorization procedure into the next iteration.
The two mechanisms are instantiated via a new malleable thread-level implementation
of the Basic Linear Algebra Subprograms (BLAS), and their benefits are illustrated via
an implementation of the LU factorization with partial pivoting enhanced with look-
ahead. Concretely, our experimental results on a six core Intel-Xeon processor show the
benefits of combining WS+ET, reporting competitive performance in comparison with
a task-parallel runtime-based solution.

Conference

Proceedings
[31]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., and Rodŕıguez-Sánchez, R.
Static versus dynamic task scheduling of the LU factorization on ARM big.LITTLE architectures.
In International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), (2017), pp. 733–
742.

We investigate several parallel algorithmic variants of the LU factorization with partial
pivoting (LUpp) that trade off the exploitation of increasing levels of task-parallelism
in exchange for a more cache-oblivious execution. In particular, our first variant corre-
sponds to the classical implementation of LUpp in the legacy version of LAPACK, which
constrains the concurrency exploited to that intrinsic to the basic linear algebra kernels
that appear during the factorization, but exerts an strict control of the cache memory
and a static mapping of kernels to cores. A second variant relaxes this task-constrained
scenario by introducing a look-ahead of depth one to increase task-parallelism, increas-
ing the pressure on the cache system in terms of cache misses. Finally, the third variant
orchestrates an execution where the degree of concurrency is only limited by the actual
data dependencies in LUpp, potentially yielding to a higher volume of conflicts due to
competition for the cache memory resources. The target platform for our implementa-
tions and experiments is a specific asymmetric multi-core processor (AMP) from ARM,
which introduces the additional scheduling complexity of having to deal with two dis-
tinct types of cores; and an L2-shared cache per cluster of the AMP, which results in
more conflictivity in the access to this key cache level.

6.2.1.3 Chapter 5. Reductions

This chapter tackles the TSOR used in the solution of dense eigenvalue and singular-value
problems, using as starting point the asymmetry-aware BLAS-2 and BLAS-3 versions. This work
is presented in [8], showing that a plain migration of these routines (using the sytrd kernel as an
example) relying only on the asymmetry-aware version of BLAS-3 is not enough when the target
architecture is an AMP. The analysis of the impact when parallelizing BLAS-2 for AMPs and
how the block size of these reductions affect the performance are included in this paper, as well
as a model that helps in predicting the best combination of cores and the algorithmic block size
depending on the matrix size.

Conference

Proceedings
[8]
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Alonso, P., Catalán, S., Herrero, J. R., and Quintana-Ort́ı, E. S. Reduction to tridi-
agonal form for symmetric eigenproblems on asymmetric multi-core processors. In International
Workshop on Programming Models and Applications for Multi-cores and Manycores (PMAM),
(2017), pp. 39–47.

We investigate how to leverage the heterogeneous resources of an Asymmetric Multi-core
Processor (AMP) in order to deliver high performance in the reduction to condensed
forms for the solution of dense eigenvalue and singular-value problems. The routines
that realize this type of two-sided orthogonal reductions (TSOR) in LAPACK are espe-
cially challenging, since a significant fraction of their floating-point operations are cast
in terms of memory-bound kernels while the remaining part corresponds to efficient
compute-bound kernels. To deal with this scenario: 1) we leverage implementations of
memory-bound and compute-bound kernels specifically tuned for AMPs; 2) we select
the algorithmic block size for the TSOR procedures via a practical model; and 3) we
adjust the type and number of cores to use at each step of the reduction. Our exper-
iments validate the model and assess the performance of our asymmetry-aware TSOR
routines, using an ARMv7 big.LITTLE AMP, for three key operations: the reduction to
tridiagonal form for symmetric eigenvalue problems, the reduction to Hessenberg form
for general eigenvalue problems, and the reduction to bidiagonal form for singular-value
problems.

6.2.2 Indirectly related publications

A parallel research was performed into time and energy modeling of DLA operations and DLA
fault tolerance on AMPs. Models were important in the characterization of the operations in order
to gain insights of the potential bottlenecks of each one. Those models were built for BLAS kernels
[27, 9] and LAPACK operations [29, 8] on both symmetric and asymmetric platforms. Moreover,
analyses about fault tolerance and their cost were performed as a critical issue on very low-power
platforms [33, 7, 25].

Journal

[9]

Alonso, P., Catalán, S., Igual, F. D., Mayo, R., Rodŕıguez-Sánchez, R., Quintana-
Ort́ı, E. S. Time and energy modeling of high-performance level-3 BLAS on x86 architectures.
Simulation Modelling Practice and Theory (2015), Vol. 55, pp. 77–94.

Journal

[33]

Chalios, C., Nikolopoulos, D., Catalán, S., Quintana-Ort́ı, E. S. Evaluating asym-
metric multi-core systems-on-chip and the cost of fault tolerance using iso-metrics. IET Computers
& Digital Techniques (2016), Vol. 10 (2), pp. 85–92.

Journal

[29]

Catalán, S., Igual, F. D., Mayo, R., Rodŕıguez-Sánchez, R., Quintana-Ort́ı, E. S.
Time and energy modeling of a high-performance multi-threaded Cholesky factorization. Journal
of Supercomputing (2017), Vol. 73(1), pp. 139–151.

Journal

[25]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R. Energy
balance between voltage-frequency scaling and resilience for linear algebra routines on low-power
multi-core architectures. Parallel Computing (2017), To appear.

Conference

Proceedings
[22]

Catalán, S., Gónzalez-Doḿınguez, J., Mayo, R., and Quintana-Ort́ı, E. S. Analyzing
the energy efficiency of the memory subsystem in multi-core processors In IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA), (2014) pp. 10–17.

Conference

Proceedings
[27]
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Catalán, S., Igual. F. D., Rodŕıguez-Sánchez, R., and Quintana-Ort́ı, E. S. Time
and energy modeling of high performance multi-threaded matrix multiplication. In 15th Inter-
national Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE), (2015), Vol. 1, pp. 311–316.

Conference

Proceedings
[7]

Aliaga, J., Catalán, S., Chalios, C., Nikolopoulos, D., and Quintana-Ort́ı, E. S.
Performance and fault tolerance of preconditioned iterative solvers on low-power ARM architec-
tures. In Parallel Computing (ParCo), (2016), Vol. 27, pp. 711–720.

6.2.3 Other publications

The publications listed in this section refer mainly to the collaboration in the development of
some modules of the PMLib library and the analysis of the framework. This section also includes
publications about distinct approaches in order to make power measurements and alternatives that
may optimize the collection of power samples.

The publications related to that parallel work are listed below:

Journal

[16]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Au-
tomatic Detection of Power Bottlenecks in Parallel Scientific Applications. Computer Science -
Research and Development (2013), Vol 29 (3-4), pp. 221–229.

Journal

[42]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Assessing power monitoring approaches for energy and
power analysis of computers. Journal of Sustainable Computing, Informatics and Systems (2014),
Vol. 4 (2), pp. 68–82.

Journal

[21]

Castaño, M. A., Catalán, S., Mayo, R., and Quintana-Ort́ı, E. S. Reducing the cost
of power monitoring with DC wattmeters. Computer Science - Research and Development (2014),
Vol. 30(2), pp. 107–114.

Journal

[34]

Charles, J., Sawyer, W., Dolz, M. F., Catalán, S. Evaluating the performance and en-
ergy efficiency of the COSMO-ART model system. Computer Science - Research and Development
(2014), Vol. 30(2), pp. 177–186.

Journal

[43]

Dolz, M. F., Kunkel, J., Chasapis, K., Catalán, S. An analytical methodology to
derive power models based on hardware and software metrics. Computer Science - Research and
Development (2016), Vol. 31(4), pp. 165–174.

Conference

Proceedings
[15]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Tracing
the power and energy consumption of the QR factorization on multi-core processors. In 12th
International Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (2012), pp. 134–142.

Conference

Proceedings
[14]

Barrachina, S., Barreda, M., Catalán, S., Dolz, M. F., Fabregat, G., Mayo, R.,
and Quintana-Ort́ı, E. S. An integrated framework for power-performance analysis of parallel
scientific workloads. In 3rd International Conference on Smart Grids, Green Communications and
IT Energy-aware Technologies (ENERGY) (2013), 114–119.

Conference

Proceedings
[41]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Solving some mysteries in power monitoring of servers:
Take care of your wattmeters! In Energy Efficiency in Large Scale Distributed Systems (EE-LSDS),
Lecture Notes in Computer Science, Vol. 8046. Springer-Verlag, 2013, pp. 3–18.

Conference

Proceedings
[30]

107



CHAPTER 6. CONCLUSIONS

Catalán, S., Malossi, A. C. I., Bekas, C., and Quintana-Ort́ı, E. S. The impact
of voltage-frequency scaling for the matrix-vector product on the IBM Power8. In European
Conference on Parallel Processing (Euro-Par), (2016), pp. 103–116.

Conference

Proceedings
[23]

Catalán, S., Ezzatti, P., Quintana-Ort́ı, E. S, and Remón, A. The impact of panel
factorization on the Gauss-Huard algorithm for the solution of linear systems on modern archi-
tectures. In International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), (2016), pp. 405–416.

6.3 Open Research Lines

The use of low-power systems in HPC is a relatively novel approach in computer science, and
thus several research questions remain open after the conclusion of this thesis. Some of the open
research lines are detailed next:

• Fully adaption of BLAS-2 operations to make them asymmetry-aware.

• Development of fully-functional implementations of the malleable BLAS kernels, based on
BLIS, and further tailoring for AMP architectures.

• Creation of interfaces that may ease the use of thread-level malleability functionality.

• Extension of the thread-level malleability approach to a multi-task scenario through the inte-
gration of this technique into runtimes that exploit task-level parallelism, such as OmpSs [48].
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Conclusiones

7.1 Conclusiones y Contribuciones Principales

El principal objetivo de la tesis era estudiar, diseñar, desarrollar y analizar soluciones expe-
rimetnales (modelos, programas, herramientas y técnicas) que son conscientes de la enerǵıa para
aplicaciones cient́ıficas y de ingenieŕıa en arquitecturas de bajo consumo.

Tras la finalización de este trabajo, las contribuciones principales de esta tesis son las siguientes:

• La adaptación de los kernels BLAS-2 symv y gemv para un multiprocesador asimétrico (AMP
del inglés Asymmetric Multicore Processor).

• La adaptación de los kernels BLAS-3 de BLIS y un estudio experimental sobre las ganancias
de rendimiento de la versión de la biblioteca consciente de la asimetŕıa.

• El estudio de rendimiento y eficiencia energética de las factorizaciones Cholesky y LU al
utilizar la versión BLAS-3 consciente de la asimetŕıa.

• La propuesta de la técnica de maleabilidad a nivel de thread para compartición de recursos
computacionales en una ejecución paralela de factorizaciones de matrices basada en tareas.

• El estudio de rendimiento y eficiencia energética de las rutinas TSOR al utilizar las versiones
BLAS-2 y BLAS-3 conscientes de la asimetŕıa. Esta contribución incluye la creación de un
modelo para determinar el tamaño óptimo de bloque y el número de cores de los kernels symv
y gemv en cada paso de las rutinas TSOR.

This contribution includes the creation of a model in order to determine the optimal block
size and number of cores for the symv and gemv kernels at each step of the TSOR routines.

La principal contribución de esta tesis es la adaptación de los kernels BLAS-2 y BLAS-3 de
BLIS para crear una versión de la biblioteca consciente de la asimetŕıa que explote los recursos
de un AMP, lo que ha constituido la base para el trabajo restante de la tesis. Utilizando esta
biblioteca como punto de partida, se han desarrollado soluciones para operaciones de álgebra lineal
densa (o DLA del inglés Dense Linear Algebra) que pertenecen al nivel de LAPACK, completando
la creación de operaciones DLA conscientes de la asimetŕıa a todos los niveles.
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Como parte de la tesis y como consecuencia del completo estudio llevado a cabo para los kernels
de LAPACK, se ha propuesto una técnica de compartición de recursos de ejecución entre tareas
en ejecución denominada maleabilidad a nivel de thread. Esta técnica puede ser aplicada tanto en
sistemas simétricos como asimétricos, proporcionando mejoras en el rendimiento gracias a la mejor
utilización de los recursos existentes. En este caso, la técnica se ha aplicado a operaciones DLA.
En principio, la misma idea se puede aplicar a bibliotecas de distinta naturaleza, puesto que es una
estrategia general para compartir o reutilizar threads en un código.

Una contribución adicional de esta tesis es el desarrollo de modelos para estimar el rendimiento y
eficiencia energética para diferentes operaciones DLA tanto en sistemas simétricos como asimétricos.
Estos modelos han permitido un mejor conocimiento de las operaciones y de su comportamiento,
especialmente en los AMPs. Además, pueden ser usados en cualquier sistema que ejecute operaciones
DLA para tomar decisiones de planificación

Las siguientes secciones explican las contribuciones y resumen las correspondientes coclusiones
en más detalle.

7.1.1 Kernels BLAS-3

Una versión asimétrica de los kernels BLAS-3 incluidos en BLIS se ha desarrollado para explotar
los recursos disponibles en un AMP. Puesto que todos los kernels BLAS-3 (excepto la operación
trsm) se pueden implementar siguiendo la misma estructura que la del producto de matrices, este
kernel en concreto se ha utilizado para explorar distintas estrategias de distribución de trabajo
entre los dos tipos de cores presentes en el SoC ARMv7 big.LITTLE (quad-core cortex A15 +
quad-core cortex-A7). La clave de nuestra implementación es la integración de una poĺıtica de
planificación de grano grueso, que distribuye dinámicamente la carga de trabajo entre los dos tipos
de cores presentes en estas arquitecturas, combinada con una planificación estática complementaria
que reparte este trabajo entre los cores del mismo tipo.

Con los prometedores resultados de rendimiento obtenidos para el producto de matrices, la
misma estrategia se ha aplicado al resto de operaciones BLAS-3 para distintas formas de operan-
dos. Los resultados han demostrado mejoras importantes en rendimiento en comparación con las
implementaciones homogéneas que trabajan exclusivamente en un tipo de core (bien A15 o A7), y
también respecto a las implementaciones multi-hilo que simplemente aplican una distribución de
trabajo simétrica y no tienen en cuenta la distinta organización de caches de los cores ni su capaci-
dad de cómputo. En general, los resultados muestran una aceleración considerable del rendimiento
para los kernels BLAS-3, siendo más moderada para la resolución de sistemas triangulares.

La versión completa de BLAS-3 se ha probado también en un arquitectura ARMv8 de 64 bits,
con distinto número de cores big/LITTLE (cuatro cores LITTLE + dos cores big), proporcionando
resultados similares a los observados para la arquitectura ARM de 32 bits. Este estudio experimental
ha sido concluyente a la hora de demostrar la flexibilidad de nuestra solución, ya que la segunda
plataforma dispone de una cantidad diferente de cores, distinta frecuencia de reloj y precisión.

7.1.2 Kernels BLAS-2

Siguiendo la misma idea aplicada en BLAS-3, dos operaciones BLAS-2 se han modificado para
hacerlas conscientes de la asimetŕıa. Los cambios en este caso incluyen el uso de parámetros de
optimización de cache, la integración del mecanismo de planificación adecuado, el desarrollo de
micro-kernels espećıficos, la paralelización de los códigos y la búsqueda de los parámetros óptimos
de cache para los kernels multi-hilo.
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Los micro-kernels espećıficos explotan la localidad de los datos al acceder a los registros, propor-
cionando ganancias en el rendimiento gracias a un mejor uso de los recursos. Además, las rutinas
symv y gemv se han paralelizado para distribuir la carga de trabajo entre distintos tipos de core.
Esta modificación dio lugar a un estudio sobre el número y tipo de cores apropiado que debe usarse
en cada caso.

Todos los cambios hechos para que symv y gemv sean consciente de la asimetŕıa han dado
lugar a mejoras importantes en el rendimiento que completan el trabajo ya realizado para BLAS-3
y muestran la importancia de utilizar bibliotecas de álgebra lineal densa conscientes de la asimetŕıa
a todos los niveles.

7.1.3 Rutinas TSOR en AMPs y modelos

Una contribución de esta tesis ha consistido en la realización de versiones conscientes de la
asimetŕıa y de la arquitectura de los procedimientos TSOR para la resolución general y simétrica
de problemas de valores propios densos aśı como la computación de la descomposición de valores
singulares (SVD del inglés Singular Value Decomposition) en arquitecturas ARM big.LITTLE multi-
core. Los experimentos con las versiones apropiadas de estas rutinas, espećıficamente optimizadas
para los cores ARM Cortex-A15 y Cortex-A7 presentes en el ODROID-XU3, han mostrado una
aceleración significativa en el tiempo de ejecución comparado con una simple ejecución de los códigos
LAPACK para este propósito.

Los análisis teóricos y prácticos han revelado el gran impacto de los kernels BLAS-2 en el
rendimiento de los procedimientos TSOR y de los roles cŕıticos del tamaño del bloque algoŕıtmico
y de la configuración de los cores. Concretametne, el tamaño de bloque tiene que ser ajustado
con precisión para distribuir la carga de trabajo entre los kernels BLAS-2 y BLAS-3, teniendo en
cuenta que en el caso de las primeros se tratan de operaciones limitadas por memoria que, debido
a su naturaleza, a menudo se encuentran en el camino cŕıtico del algoritmo. Además, una ejecución
óptima también depende del número y tipo de cores empleados para cada tipo de dimensión de
los bloques constituyentes, con estos dos parámetros determinando cuando conviene añadir cores
LITTLE a la ejecución. Como contribución derivada de esta circunstancia, se ha propuesto un
modelo sencillo para predecir el tamaño óptimo del bloque algoŕıtmico para una rutina TSOR
basado en las dimensiones de los operandos de entrada, los principales bloques constituyentes de la
reducción y los flops obtenidos en por cada uno.

7.1.4 Factorizaciones LU y Cholesky en big.LITTLE

Basándonos en la versión BLIS-3 consciente de la asimetŕıa, la implementación LAPACK de
referencia se ha migrado para ejecutarla sobre un AMP. De esta manera, se han explorado los
beneficios e inconvenientes de llevar a cabo una migración simple (plana) en la que no se realiza
ninguna optimización relevante en LAPACK. Los experimentos con dos de las rutinas principales de
LAPACK, las factorizaciones LU y Cholesky, ilustran dos escenarios (casos) distintos, yendo de una
operación/rutina limitada por memoria (factorización Cholesky) en la que un alto rendimiento se
obtiene fácilmente solo con la migración plana; a una operación limitada por cómputo (factorización
LU) en la que para conseguir la misma mejora en los resultados es necesaria una reorganización
significativa del código que introduce mecanismos avanzados de planificación.

Más concretamente, la migración plana de la factorización LU proporciona buenos resultados
para matrices de tamaño grande. Sin embargo, para tamaños medianos y pequeños la factorización
del panel es un cuello de botella que reduce el rendimiento significativamente. Como medio para
paliar el efecto de la factorización del panel, se ha aplicado la técnica de look-ahead. El análisis
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del impacto al aplicar esta estrategia ha demostrado mejoras importantes en el rendimiento para
tamaños de matrices medianos y grandes.

El estudio de estas dos rutinas LAPACK ha mostrado dos aspectos importantes: es esencial
utilizar bibliotecas de álgebra lineal densa conscientes de la asimétria para las operaciones bási-
cas (BLAS) para aśı poder explotar las plataformas asimétricas y, dado que muchas aplicaciones
cient́ıficas utilizan operaciones de álgebra lineal densa más sofisticadas, se deben considerar nuevas
estrategias al adaptar la pila completa de álgebra lineal densa (BLAS+LAPACK) a los AMPs.

7.1.5 Maleabilidad a nivel de thread

Una contribución de esta tesis ha sido la introducción de dos nuevas técnicas, Work Stealing
(WS) y Early Termination (ET), para evitar el desbalanceo de carga durante la ejecución de
factorizaciones sobre matrices, mejorada con look-ahead, para la resolución de sistemas lineales.
Estas técnicas se pueden aplicar cuando existe más de una tarea en el código y serán beneficiosas
en aquellos casos en los que hay desbalanceo de carga. Utilizando la LU como ejemplo, se ha
podido comprobar que el mecanismo de WS se beneficia especialmente de una versión de BLIS
con maleabilidad a nivel de thread, lo que permite que el equipo de threads que se encargan de
la factorización del panel, una vez terminada esta tarea, se puedan reasignar a la ejecución de
la actualización de la matriz. El mecanismo ET se encarga de la situación contraria, con una
factorización del panel mucho más costosa que la actualización de la matriz. En este escenario, el
equipo de threads que ejecuta la actualización le comunica al segundo equipo que debe terminar la
factorización del panel, avanzando el proceso de factorización a la siguiente iteración.

Los resultados en un Intel Xeon E5-2603 v3 han mostrado los beneficios en el rendimiento de
la versión de la LU mejorada con BLIS maleable y ET en comparación con la factorización LU
plana, aśı como con la versión con look-ahead. Los experimentos también muestran un rendimiento
competitivo comparado con una factorización LU paralelizada mediante un sofisticado runtime,
como OmpSs, que introduce un look-ahead de profundidad dinámica (variable). Comparado con la
solución de OmpSs, nuestra aproximación ofrece mayor rendimiento para la mayoŕıa de problemas,
un ajuste óptimo del tamaño de bloque algoŕıtmico y un uso de la memoria considerablemente
menor ya que no requiere el soporte de un sofisticado runtime.

Para concluir, y gracias a los prometedores resultados de los tests realizados, se puede esperar
que la maleabilidad a nivel de thread sea crucial para explotar el paralelismo masivo de threads en
futuras arquitecturas.

7.2 Publicaciones relacionadas

Las contribuciones de esta tesis están respaldadas por la publicación de su contenido en disintas
conferencias y revistas revisadas por pares tanto de carácter nacional como internacional. En esta
sección, se listan las publicaciones relacionadas con cada contribución y se clasifican como directa-
mente relacionadas con el contenido de la tesis, indirectamente relacionadas y no relacionadas.

7.2.1 Publicaciones directamente relacionadas

7.2.1.1 Chapter 3. Basic Linear Algebra Subprograms (BLAS)

El primer paso para hacer bibliotecas de álgebra lineal densa conscientes de la asimetŕıa ha
sido el análisis de gemm [28], la operación modelo de BLAS-3, para identificar el mejor mecanismo
para adaptarla a un AMP. El trabajo presentado en este art́ıculo estudia distintos esquemas de
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planificación que mejoran el rendimiento de gemm: planificación asimétrica estática, planificación
asimétrica estática consciente de la cache y planificiación asimétrica dinámica consciente de la
cache. Este estudio se extiende en [24], donde la mejor opción de planificaión se aplica no solo a
la gemm, sino a todas las operaciones restantes de BLAS-3 (excepto para trsm), para distintas
opciones de paralelización de bucles y formas de operandos. El segundo art́ıculo completa el trabajo
empezado con el kernel gemm, probando la viabilidad de una versión BLAS-3 completa consciente
de la asimetŕıa y analizando las mejoras en el rendimiento gracias a esta adaptación. Además, la
versión BLAS-3 consciente de la asimétria se porta a una arquitectura big.LITTLE diferente con
una proporción de cores big/LITTLE distinta, consolidando los resultados iniciales.

La adaptación de las operaciones BLAS-2 symv y gemv, siguiendo la misma idea que para
gemm, se ha incluido como parte del trabajo desarrollado en la creación de versiones conscientes
de la asimetŕıa de TSOR en [8], lo que será analizado en la Sección 7.2.1.3.

Journal

[28]

Catalán, S., Igual, F. D., Mayo, R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R.
Architecture-aware configuration and scheduling of matrix multiplication on asymmetric multi-core
processors. Journal of Cluster Computing (2016), Vol. 19(3), pp. 1037–1051.

Journal

[24]

Catalán, S., Herrero, J. R., Igual, F. D., Rodŕıguez-Sánchez, R., Quintana-Ort́ı,
E. S., Adeniyi-Jones, C. Multi-threaded dense linear algebra libraries for low-power asymmetric
multi-core processors. Journal of Computational Science (2016), To appear.

7.2.1.2 Chapter 4. Factorizaciones

Una vez finalizada la adaptación de BLAS-3 el siguiente paso natural ha sido la creación de
una versión consciente de la asimetŕıa de las operaciones LAPACK. Para ello, nos hemos centrado
en la factorización de matrices para sistemas lineales, seleccionando las factorizaciones Cholesky
y LU como ejemplos de distinta naturaleza incluidos en la biblioteca. La migración de las rutinas
LAPACK a un AMP se empezó en [24], en el que una migración plana de LAPACK se realizó para
comprobar experimentalmente los beneficios, limitaciones y el potencial de esta aproximación desde
la perspectiva del rendimiento y la eficiencia energética. Este trabajo demostró la necesidad de nue-
vas aproximaciones para mejorar el rendimiento de las factorizaciones, especialmente para tamaños
de matriz pequeños/medianos. En [36], un análisis exhaustivo de diferentes enfoques (combinando
runtimes, bibliotecas de álgebra lineal densa conscientes de la asimetŕıa y bibliotecas de álgebra
lineal densa no conscientes de la misma) para la factorización Cholesky se llevó a cabo, mostrando
los beneficios de la combinación de runtimes y bibliotecas conscientes de la asimetŕıa; este traba-
jo se extendió en [37], llevando a cabo un estudio similar para la factorización LU y obteniendo
conclusiones comparables.

Una estrategia diferente para incrementar el rendimiento se propuso en [26], abogando por
la maleabilidad a nivel de thread en bibliotecas de álgebra lineal densa para la compartición de
recursos de ejecución entre las tareas de un código dado. Esta idea surge como una alternativa que
no requiere de un runtime para maximizar el uso de los recursos disponibles. La aplicación de esta
idea a AMPs se analiza en [31], donde los beneficios e inconvenientes de usar una planificación
estática (a través de la técnica de maleabilidad propuesta) y dinámica (basada en un runtime) se
discuten detalladamente.

A continuación se presenta una lista detallada de las principales publicaciones relacionadas con
este tema:

Journal

[37]

Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez, R., Quintana-
Ort́ı, E. S. Revisiting conventional task schedulers to exploit asymmetry in multi-core architec-
tures for dense linear algebra operations. Parallel Computing (2017), To appear.
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Conference

Proceedings
[36]

Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez, R., and
Quintana-Ort́ı, E. S. Refactoring conventional task schedulers to exploit asymmetric ARM
big.LITTLE architectures in dense linear algebra. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), (2016), pp. 692–701.

Arxiv

[26]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R. , and van
de Geijn, R. A. A case for malleable thread-level linear algebra libraries: The LU Factorization
with Partial Pivoting. In Applied Mathematics and Computation, In review.

Conference

Proceedings
[31]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., and Rodŕıguez-Sánchez, R. Static
versus dynamic task scheduling of the LU factorization on ARM big.LITTLE architectures. In
International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), (2017), pp. 733–
742.

7.2.1.3 Chapter 5. Reducciones

Este caṕıtulo aborda las rutinas TSOR usadas en la resolución de problemas densos de valores
propios y valores singulares, utilizando como base las versiones BLAS-2 y BLAS-3 conscientes de
la asimetŕıa. Este trabajo se presenta en [8], mostrando que la migración directa de estas rutinas
(utilizando el kernel sytrd como ejemplo) basada únicamente en la versión BLAS-3 consciente de
la asimetŕıa no es suficiente cuando la arquitectura objetivo es un AMP. El análisis del impacto al
paralelizar BLAS-2 para los AMPs y el efecto que tiene el tamaño de bloque sobre el rendimiento
se incluyen en este art́ıculo, aśı como un modelo que ayuda a predecir la mejor combinación de
cores y de tamaño de bloque algoŕıtmico dependiendo del tamaño de matriz.

Conference

Proceedings
[8]

Alonso, P., Catalán, S., Herrero, J. R., and Quintana-Ort́ı, E. S. Reduction to
tridiagonal form for symmetric eigenproblems on asymmetric multi-core processors. In Internatio-
nal Workshop on Programming Models and Applications for Multi-cores and Manycores (PMAM),
(2017), pp. 39–47.

7.2.2 Publicaciones indirectamente relacionadas

Una investigación paralela se ha llevado a cabo sobre modelado de tiempo y enerǵıa para
operaciones de álgebra lineal densa y tolerancia a fallos sobre AMPs. Los modelos han sido relevantes
en la caracterización de las operaciones para obtener un mejor conocimiento de los potenciales
cuellos de botella en cada una. Estos modelos se han construido para kernels BLAS [27, 9] y
operaciones LAPACK [29, 8] en paltaformas simétricas y asimétricas. Además, se han realizado
análisis sobre tolerancia a fallos y su coste como un tema cŕıtico en plataformas de muy bajo
consumo [33, 7, 25].

Journal

[9]

Alonso, P., Catalán, S., Igual, F. D., Mayo, R., Rodŕıguez-Sánchez, R., Quintana-
Ort́ı, E. S. Time and energy modeling of high-performance level-3 BLAS on x86 architectures.
Simulation Modelling Practice and Theory (2015), Vol. 55, pp. 77–94.

Journal

[33]

Chalios, C., Nikolopoulos, D., Catalán, S., Quintana-Ort́ı, E. S. Evaluating asym-
metric multi-core systems-on-chip and the cost of fault tolerance using iso-metrics. IET Computers
& Digital Techniques (2016), Vol. 10 (2), pp. 85–92.

Journal

[29]

Catalán, S., Igual, F. D., Mayo, R., Rodŕıguez-Sánchez, R., Quintana-Ort́ı, E. S.
Time and energy modeling of a high-performance multi-threaded Cholesky factorization. Journal
of Supercomputing (2017), Vol. 73(1), pp. 139–151.
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Journal

[25]

Catalán, S., Herrero, J. R., Quintana-Ort́ı, E. S., Rodŕıguez-Sánchez, R. Energy
balance between voltage-frequency scaling and resilience for linear algebra routines on low-power
multi-core architectures. Parallel Computing (2017), To appear.

Conference

Proceedings
[22]

Catalán, S., Gónzalez-Doḿınguez, J., Mayo, R., and Quintana-Ort́ı, E. S. Analyzing
the energy efficiency of the memory subsystem in multi-core processors In IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA), (2014) pp. 10–17.

Conference

Proceedings
[27]

Catalán, S., Igual. F. D., Rodŕıguez-Sánchez, R., and Quintana-Ort́ı, E. S. Ti-
me and energy modeling of high performance multi-threaded matrix multiplication. In 15th In-
ternational Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE), (2015), Vol. 1, pp. 311–316.

Conference

Proceedings
[7]

Aliaga, J., Catalán, S., Chalios, C., Nikolopoulos, D., and Quintana-Ort́ı, E. S.
Performance and fault tolerance of preconditioned iterative solvers on low-power ARM architectu-
res. In Parallel Computing (ParCo), (2016), Vol. 27, pp. 711–720.

7.2.3 Otras publicaciones

Las publicaciones listadas en esta sección se refieren en su mayoŕıa a la colaboración en el
desarrollo de algunos módulos de la biblioteca PMLib y el análisis de este framework. Esta sección
también incluye publicaciones sobre distintas aproximaciones para realizar mediciones de consumo
y diversas alternativas para optimizar la recolección de muestras de potencia.

Las publicaciones relacionadas con este trabajo paralelo se listan a continuación:

Journal

[16]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Au-
tomatic Detection of Power Bottlenecks in Parallel Scientific Applications. Computer Science -
Research and Development (2013), Vol 29 (3-4), pp. 221–229.

Journal

[42]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Assessing power monitoring approaches for energy and
power analysis of computers. Journal of Sustainable Computing, Informatics and Systems (2014),
Vol. 4 (2), pp. 68–82.

Journal

[21]

Castaño, M. A., Catalán, S., Mayo, R., and Quintana-Ort́ı, E. S. Reducing the cost
of power monitoring with DC wattmeters. Computer Science - Research and Development (2014),
Vol. 30(2), pp. 107–114.

Journal

[34]

Charles, J., Sawyer, W., Dolz, M. F., Catalán, S. Evaluating the performance and
energy efficiency of the COSMO-ART model system. Computer Science - Research and Development
(2014), Vol. 30(2), pp. 177–186.

Journal

[43]

Dolz, M. F., Kunkel, J., Chasapis, K., Catalán, S. An analytical methodology to
derive power models based on hardware and software metrics. Computer Science - Research and
Development (2016), Vol. 31(4), pp. 165–174.

Conference

Proceedings
[15]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Tracing
the power and energy consumption of the QR factorization on multi-core processors. In 12th
International Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (2012), pp. 134–142.

Conference

Proceedings
[14]

Barrachina, S., Barreda, M., Catalán, S., Dolz, M. F., Fabregat, G., Mayo, R.,
and Quintana-Ort́ı, E. S. An integrated framework for power-performance analysis of parallel
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scientific workloads. In 3rd International Conference on Smart Grids, Green Communications and
IT Energy-aware Technologies (ENERGY) (2013), 114–119.

Conference

Proceedings
[41]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Solving some mysteries in power monitoring of servers:
Take care of your wattmeters! In Energy Efficiency in Large Scale Distributed Systems (EE-LSDS),
Lecture Notes in Computer Science, Vol. 8046. Springer-Verlag, 2013, pp. 3–18.

Conference

Proceedings
[30]

Catalán, S., Malossi, A. C. I., Bekas, C., and Quintana-Ort́ı, E. S. The impact of
voltage-frequency scaling for the matrix-vector product on the IBM Power8. In European Conference
on Parallel Processing (Euro-Par), (2016), pp. 103–116.

Conference

Proceedings
[23]

Catalán, S., Ezzatti, P., Quintana-Ort́ı, E. S, and Remón, A. The impact of panel
factorization on the Gauss-Huard algorithm for the solution of linear systems on modern architectu-
res. In International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),
(2016), pp. 405–416.

7.3 Ĺıneas abiertas de investigación

El uso de sistemas de bajo consumo en CAP es relativamente nuevo en computación y, por
tanto, varias cuestiones permanecen abiertas tras la conclusión de esta tesis. Algunas de las ĺıneas
abiertas de investigación se detallan a continuación:

• Adaptación completa de operaciones BLAS-2 para hacerlas conscientes de la asimetŕıa.

• Desarrollo de una implementación maleable completamente funcional de los kernels BLAS,
basada en BLIS, y su correspondiente adaptación para arquitecutas AMP.

• Creación de interfaces que faciliten la utilización de la maleabilidad a nivel de thread.

• Extensión de la aproximación de maleabilidad a nivel de thread a un escenario muti-tarea a
través de la integración de esta técnica en runtimes que permiten el paralelismo a nivel de
tarea, como por ejemplo OmpSs [48].
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Acronyms

ACML AMD Core Math Library. 5

AMP asymmetric multicore processor. ix, 9, 15, 20, 47, 52, 71, 75, 99–103, 105, 106, 109–114, 116

API Application Programming Interface. 12

BDP block-data parallelism. 52

BLAS Basic Linear Algebra Subprograms. 5, 6, 15, 17, 38, 71

BLIS BLAS-like Library Instantiation Software Framework. 7, 8, 15–17, 19–21, 23–27, 29, 30, 32,
34, 36–38, 40, 46, 47

CAP Computación de Altas Prestaciones. 116

CPU Central Processing Unit. xvii

DLA Dense Linear Algebra. 4, 5, 11, 13, 52, 53, 99–103, 106, 109, 110

ET Early Termination. 101, 112

FLOPS floating-point arithmetic operations per second. xvii

GFLOPS billions of floating-point arithmetic operations per second. 8, 21, 33, 45, 47, 85, 88, 91

GFLOPS/W GFLOPS per Watt. 21, 29, 47

GPU Graphics Processing Unit. 9

HPC High Performance Computing. xvii, xviii, 108

ISA instruction set architecture. 9

LAPACK Linear Algebra PACKage. vii, 4, 5, 8, 47, 48, 52, 79, 101, 111
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Acronyms

LLS linear least squares. 8

MFLOPS/W MFLOPS per Watt. xvii

MTL malleable thread level. 59, 63, 71

s.p.d. symmetric positive definite. 47

SIMD Single Instruction Multiple Data. 10, 16, 23

SoC systems-on-chip. 9, 15, 26, 47

TP task-parallel. 54, 55

TSOR Two-Sided Orthogonal Reductions. 99, 102, 105, 109, 113, 114

WS worker sharing. 58, 101, 112
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[27] Catalán, S., Igual, F., Rodŕıguez-Sánchez, R., and Quintana-Ort́ı, E. Time and
energy modeling of high performance multi-threaded matrix multiplication. In 15th Interna-
tional Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (2015), pp. 311–316.

[28] Catalán, S., Igual, F. D., Mayo, R., Rodŕıguez-Sánchez, R., and Quintana-Ort́ı,
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